DOI QR코드

DOI QR Code

Assessing Distribution of Degree of Saturation for Track Transition Zone Using Soil Water Characteristic Curve

접속부 궤도 성토재료의 함수특성곡선을 이용한 포화도 분포 산정

  • 최찬용 (철도기술연구원 고속철도연구본부) ;
  • 이정민 (한국교통대학교 철도융합기술연구소) ;
  • 권혁민 (한국교통대학교 철도시설공학과) ;
  • 오정호 (한국교통대학교 철도시설공학과)
  • Received : 2015.02.06
  • Accepted : 2015.02.25
  • Published : 2015.04.01

Abstract

The number of occurrence of differential settlement and track irregularity at track transition zone recently comes to increase, which leads to frequent maintenance activities that have an impact on train operation. Such track transition zone damages are attributed to the change of mechanical properties of fill materials due to environmental factors such as rainfall and freeze, and thaw. Consequently, this study attempts to establish the soil water characteristic curve (SWCC) of fill materials, and conduct seepage analysis to assess the distribution of degree of saturation (DOS) for track transition zone in case of rainfall. The SWCC of fill materials was successfully obtained using filter paper test method. The results of seepage analysis revealed that rainfall intensity, the slope of backfill, backfill condition (fill or cut), and SWCC are significantly influential in controlling the distribution of DOS.

최근 궤도 접속부에서의 부등침하 및 궤도틀림으로 잦은 유지보수 및 열차운영에 지장을 초래하는 경우가 많아지고 있다. 이는 주로 궤도 접속부 시공에 사용되는 다양한 성토재료의 강우나 동결융해 같은 환경적 인자에 의한 역학적 물성들의 변화에 기인한 것으로, 본 연구에서는 궤도 접속부 성토재료에 대한 함수특성곡선을 산정하고 강우 시 포화도 변화 추이를 알아보고자 침투해석을 수행 하였다. 필터페이퍼를 이용하여 다짐 성토의 함수특성곡선을 성공적으로 산정할 수 있었고, 함수특성곡선 데이터를 이용한 강우 시 침투해석을 수행한 결과 궤도 접속부 성토재료의 포화도 분포는 강우강도, 뒤채움재 경사, 성토 및 절토 여부, 그리고 함수특성곡선에 큰 영향을 받는 것을 확인 하였다.

Keywords

References

  1. ASTM D5298 (2010). Standard test method for measurement of soil suction using filter paper, Washington, D. C.
  2. Bicalho, K. V., Marinho, F. A. M., Fleureau, J. M., Gomes C. A. and Ferreira, S. (2009). "Evaluation of filter paper calibrations for indirect determination of soil suctions of an unsaturated compacted silty sand." Proc. of the 17th Int. Conf. on Soil Mechanics and Geotechnical Eng., Egypt, 2009.
  3. Brooks, R. H. and Corey, A. T. (1964). "Hydraulic properties of porous media." Hydrology Paper no.3, Colorado State Univ., Fort Collins, Colo, 1964.
  4. Bulut, R., Lytton, R. L. and Wray, W. K. (2001) "Suction measurements by filter paper." ASCE Geotechnical Special Publication, No. 115, pp. 243-261.
  5. Chandra, D., Chua, K. M. and Lytton, R. L. (1989). "Effects of temperature and moisture on load response of granular base material in thin pavements." Transportation Research Record No. 1252, National Research Council, Washington, D. C., pp. 33-41.
  6. Childs, E. C. and Collis-George, N. (1950). "The permeability of porous materials." Proc. Royal Soc., Vol. 210, No. A, pp. 392-405.
  7. Drumm, E., Reeves, J., Madgett, M. and Trolinger, W. (1997). "Subgrade resilient modulus correction for saturation effects." J. Geotech. Geoenviron. Eng., Vol. 123, No. 7, pp. 663-670. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:7(663)
  8. Fredlund, D. G. and Xing, A. (1994). "Equations for the soil-water characteristic curve." Canadian Geotechnical Journal, Vol. 31, No. 4, pp. 521-532. https://doi.org/10.1139/t94-061
  9. Gardner, W. R. (1958). "Some steady state solutions of the unsaturated moisture flow equation with application of evaporation from a water table." Soil Science, Vol. 85, pp. 223-232.
  10. Korea Rail Network Authority (2011). Railroad construction specification, 11-B551219-000019-01
  11. Kunze, R. J., Uehara, G. and Graham, K. (1968). "Factors important in the calculation of hydraulic conductivity." Proc. Soil Sci., Vol. 32, pp. 760-765.
  12. Lee, S., Lee, S. and Jang, B. (2002). "Unsaturated shear strength characteristics of weathered granite soils." J. of the Korean Society of Civil Eng., Vol. 22, No. 1, pp. 81-88.
  13. Marshall, T. J. (1958). "A relation between permeability and size distribution of pores." J. Soil Sci., Vol. 9, pp. 1-8. https://doi.org/10.1111/j.1365-2389.1958.tb01892.x
  14. McKee, C. R. and Bumb, A. C. (1987). "Flow-testing coalbed methane production wells in the presence of water and gas." In SPIE Formation Evaluation, December, pp. 599-608.
  15. Ministry of Land, Transport, and Maritime Affairs. (2011). 2011 Pavement structural design specification.
  16. Oh, J., Fernando, E. G. and Lee, W. (2010). "Consideration of moistrue effect on load bearing capacity in texas flexible pavements." KSCE J. of Civil Eng., Vol. 14, No. 4, pp. 493-501. https://doi.org/10.1007/s12205-010-0493-x
  17. Oh, J., Fernando, E. G., Holzschuher, C. and Horhota, D. (2012). "Comparison of resilient modulus values for florida flexible mechanistic-empirical pavement design." Int. J. of Pavement Eng., Vol. 13, No. 5, pp. 472-484. https://doi.org/10.1080/10298436.2011.633170
  18. Ping, W. V., Wang, Y. and Yang, Z. (2000). Field and laboratory evaluation of resilient modulus measurements of florida pavements soils, Research Report No. FL/DOT/RMC/0636(F)-4538, FAMU-FSU College of Engineering, Tallahassee, Fl.
  19. Van Genuchten, M. T. (1980). "A closed form equation predicting the hydraulic conductivity of unsaturated soils." Soil Sci. Soc. Amer. Journal, Vol. 44, pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  20. Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E. and Clifton, A. W. (1996). "Model of the prediction of shear strength with respect to soil suction." Canadian Geotechnical Journal, Vol. 33, No. 3, pp. 379-392. https://doi.org/10.1139/t96-060
  21. Zapata, C., E. and Houston, W. N. (2008). Calibration and validation of the enhanced integrated climatic model for pavement design, NCHRP Report 602, Transportation Research Board, Washington, D.C.