DOI QR코드

DOI QR Code

3D Indoor Modeling Based on Terrestrial Laser Scanning

지상레이저스캐닝 기반 3차원 실내 모델링

  • 홍승환 (연세대학교 토목환경공학과) ;
  • 조형식 (연세대학교 토목환경공학과) ;
  • 김남훈 (연세대학교 토목환경공학과) ;
  • 손홍규 (연세대학교 토목환경공학과)
  • Received : 2015.01.08
  • Accepted : 2015.03.03
  • Published : 2015.04.01

Abstract

According to the increasing demand for 3D indoor spatial information, the utilization of a terrestrial laser scanner comes to the fore. However, the research for the comparison between a terrestrial laser scanning method and a traditional surveying method is insufficient. The paper evaluated the time-efficiency and the locational accuracy of an AMCW type and a direct TOF type of terrestrial laser scanning methods in comparison with the observation using a total station. As a result, an AMCW type showed higher time-efficiency than a direct TOF type and the RMSE between the two types of data was ${\pm}1mm$. Moreover, the terrestrial laser scanning method showed twice higher time-efficiency than the observation using a total station and the RMSE between the two data was ${\pm}3.4cm$. The results indicate that the terrestrial laser scanning method has better profitability and performance for 3D indoor modeling than the traditional survey using a total station. In the future, a terrestrial laser scanner can be efficiently utilized in the construction of 3D indoor spatial information.

3차원 실내공간정보에 구축 시 경제성, 효율성 및 정확도 향상을 위한 지상레이저스캐너의 활용이 주목을 받고 있다. 그러나 실내공간정보 구축에 있어 지상레이저스캐너 관측방식과 기존 측량방식 방식에 대한 비교 연구는 미비한 실정이다. 본 연구에서는 설계도면 갱신 및 3차원 실내 모델링에 AMCW 방식 및 direct TOF 방식의 지상레이저스캐너와 토탈스테이션의 작업시간 및 위치정확도를 비교하여 지상레이저스캐너의 효율성과 경제성을 제시하였다. 비교결과, AMCW 방식은 direct TOF 방식에 비해 시간효율성이 뛰어났으며 두 관측값 사이의 RMSE는 ${\pm}1mm$ 수준으로 나타났다. 또한 지상레이저스캐닝 방식은 토탈스테이션 관측방식에 비해 2배 이상의 시간효율성을 보였으며 두 관측값 사이의 RMSE는 ${\pm}3.4cm$로 나타났다. 제시된 지상레이저스캐너를 이용한 3차원 실내모델링의 경제성과 효율성을 바탕으로 향후 3차원 실내공간 정보 구축에 지상레이저스캐닝 방식이 효과적으로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Arayici, Y. (2008). "Towards building information modelling for existing structures." Structural Survey, Vol. 26, No. 3, pp. 210-222. https://doi.org/10.1108/02630800810887108
  2. Becerik-Gerber, B., Jazizadeh, F., Kavulya, G. and Calis, G. (2011). "Assessment of target types and layouts in 3D laser scanning for registration accuracy." Automation in Construction, Vol. 20, No. 5, pp. 649-658. https://doi.org/10.1016/j.autcon.2010.12.008
  3. Budroni, A. and Bohm, J. (2010). "Automatic 3D modelling of indoor manhattan-world scenes from laser data." Proc. of the ISPRS Commission V Symposium.
  4. Faro, Faro Focus3D brochure, Available at: http://www.faroasia.com/resource-centre/assets/sea/brochures/FLS_Focus3D_EN.pdf (Accessed: January 31, 2015).
  5. Fischler, M. A. and Bolles, R. C. (1981). "Random sample consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography." Communications of the ACM, Vol. 24, No. 6, pp. 381-395. https://doi.org/10.1145/358669.358692
  6. Frohlich, C. and Mettenleiter, M. (2004). "Terrestrial laser scanningnew perspectives in 3D surveying." International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 36, Part. 8, W2.
  7. Hajian, H. and Becerik-Gerber, B. (2010). "Scan to BIM: Factors Affecting Operational and Computational Errors and Productivity Loss." The 27th International Symposium on Automation and Robotics in Construction (ISARC).
  8. Hammoudi, K., Dornaika, F. and Paparoditis, N. (2009). "Extracting building footprints from 3D point clouds using terrestrial laser scanning at street level." ISPRS/CMRT09, 38, pp. 65-70.
  9. Heo, J., Jeong, S., Park, H., Jung, J., Han S., Hong, S. and Sohn, H. (2013). "Productive high-complexity 3D city modeling with point clouds collected from terrestrial LiDAR, Computers." Environment and Urban Systems, Vol. 41, pp. 26-38. https://doi.org/10.1016/j.compenvurbsys.2013.04.002
  10. Hong, S., Jung, J., Kim, S., Hong, S. and Heo, J. (2013), "Semiautomatic method for constructing 2D and 3D indoor GIS maps based on point clouds from terrestrial LiDAR." Journal of the Korean Society for Geospatial Information System, Vol. 21, No. 2, pp. 99-105 (in Korean). https://doi.org/10.7319/kogsis.2013.21.2.099
  11. Ingensand, H. (2006). "Metrological aspects in terrestrial laserscanning technology." Proceedings of the 3rd IAG/12th FIGURE symposium, Baden, Austria.
  12. Jazayeri, I., Rajabifard, A. and Kalantari, M. (2014). "A geometric and semantic evaluation of 3D data sourcing methods for land and property information." Land Use Policy, Vol. 36, pp. 219-230. https://doi.org/10.1016/j.landusepol.2013.08.004
  13. Leica Geosystems, Leica ScanStation C10. (2015). Available at: http://hds.leica-geosystems.com/downloads123/hds/hds/ScanStation%20C10/brochures-datasheet/Leica_ScanStation_C10_DS_en.pdf (Accessed: January 31, 2015).
  14. Randall, T. (2011). "Construction engineering requirements for integrating laser scanning technology and building information modeling." Journal of Construction Engineering and Management, Vol. 137, No. 10, pp. 797-805. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000322
  15. Schulz, T. (2008) "Calibration of a terrestrial laser scanner for engineering geodesy." Institut fur Geodasie und Photogrammetrie an der Eidgenossischen Technischen Hochschule Zurich.
  16. Tang, P., Huber, D., Akinci, B., Lipman, R. and Lytle, A. (2010). "Automatic reconstruction of as-built building information models from laser-scanned point clouds: A Review of Related Techniques." Automation in construction, Vol. 19, No. 7, pp. 829-843. https://doi.org/10.1016/j.autcon.2010.06.007
  17. Topcon, 9-series, robotic Total Station System. (2015). Available at: http://www.topconpositioning.com/sites/default/files/literature/9_Series_ Broch_7010_ 2014_RevA.pdf (Accessed: January 31, 2015).

Cited by

  1. Indoor 3D Modeling Using a Rotating Stereo Frame Camera System and Accuracy Evaluation vol.32, pp.5, 2016, https://doi.org/10.7780/kjrs.2016.32.5.9
  2. Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica vol.15, pp.12, 2015, https://doi.org/10.3390/s150923514
  3. Evaluation of Geometric Error Sources for Terrestrial Laser Scanner vol.24, pp.2, 2016, https://doi.org/10.7319/kogsis.2016.24.2.079
  4. Accuracy Comparison Between Image-based 3D Reconstruction Technique and Terrestrial LiDAR for As-built BIM of Outdoor Structures vol.33, pp.6, 2015, https://doi.org/10.7848/ksgpc.2015.33.6.557