DOI QR코드

DOI QR Code

Modeling of Sound-structure Interactions for Designing a Piezoelectric Micro-Cantilever Acoustic Vector Sensor

압전 미세 외팔보 형 수중 음향 벡터센서의 작동 원리와 설계 기법

  • Received : 2014.04.07
  • Accepted : 2015.01.05
  • Published : 2015.03.31

Abstract

An acoustic vector sensor is a device that is capable of measuring the direction of wave propagation and the acoustic pressure. In this paper, the modeling of micro-cantilever sensor for the vector sensor are proposed by consideration of acoustic phenomenon in water. Two models based on unimorph structure are proposed in this paper and corresponding transfer function which describes the relation between input pressure wave and output voltage depending on incidence angle and frequency of pressure wave is derived based on lumped model. It has been shown that very thin and flexible micro-cantilever can be used to measure directly the particle velocity component in water.

수중 음향 벡터센서는 음압 뿐 아니라 음파의 진행 방향에 관한 정보를 측정할 수 있는 센서이다. 본 논문에서는 미세 외팔보를 이용한 수중 음향 벡터 센서를 구현하기 위해 음향학적 이론을 바탕으로 음향과 기계 구조물의 상호작용을 이론적으로 정립하고자 하였다. 감응 방식으로 압전 효과를 이용한 두 가지 유니모프(unimorph)형태의 모델을 제시하였으며, 제시된 모델에 대하여 압전 미세 외팔보의 거동을 집중 질량 모델을 통해 음파가 임의의 주파수와 각도를 가지고 미세 외팔보로 입사할 때 나오는 신호의 크기를 구할 수 있는 전달함수를 유도하였다. 또한 이를 바탕으로 매우 얇고 유연한 구조물로 미세 외팔보를 설계하면 매질의 입자 속도에 관한 정보를 직접적으로 측정 가능한 센서로 활용할 수 있다는 것을 확인하였다.

Keywords

References

  1. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound, (Springer, New York, 2007), pp. 176.
  2. S. J. Choi, H. S. Lee, and W. K. Moon, "A micro-machined piezoelectric hydrophone with hydrostatically balanced air backing," Sens. Actuators. A. Phys. 158, 60-71(2010). https://doi.org/10.1016/j.sna.2009.12.019
  3. S. J. Choi, H. S. Lee, and W. K. Moon, "A micro-machined piezoelectric hydrophone with hydrostatically balanced air backing," Sensors and Actuators A: Physical 158, 60-71 (2010). https://doi.org/10.1016/j.sna.2009.12.019
  4. H. E. de Bree, "The microflown:an acoustic particle velocity sensor," Acoust. Aust. 31, 91-94(2003).
  5. C. Xue, S. Chena, W. Zhang, and B. Zhang, "Design, fabrication, and preliminary characterization of a novel mems bionic vector hydrophone," Microelectronics J. 38, 1021-1026 (2007). https://doi.org/10.1016/j.mejo.2007.09.008
  6. B. Zhang, H. Qiao, S. Chen, W. Zhang, and C. Xue, "Modeling and characterization of a micromachined artificial hair cell vector hydrophone," Microsyst. Technol. 14, 821-828 (2008). https://doi.org/10.1007/s00542-008-0560-0
  7. L. Guan, G. Zhang, J. Xu, C. Xue, W. Zhang, and J. Xiong, "Design of t-shape vector hydrophone based on mems," Sens. Actuators. A. Phys. 188, 35-40 (2012). https://doi.org/10.1016/j.sna.2012.01.018
  8. J. M. Gere and B. J. Goodno, Mechanics of Materials (CENGAGE Learning, Toronto, 2009), pp. 307.
  9. D. T. Blackstock, Fundamentals of Physical Acoustics (John WILEY & Sons, New Jersey, 2000), pp. 164.
  10. J. Lu, T. Ikehara, Y. Zhang, T. Mihara, T. Itoh, and R. Maeda, "High quality factor silicon cantilever driven by pzt actuator for resonant based mass detection", Procs. of the symposium on DTIP of MEMS/MOEMS, 60-65 (2008).
  11. L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, Fundmentals of Acoustics (John Wiley and Sons, New Jersey, 1999), pp. 11-12.
  12. J. K. Park and W. K. Moon, "Constituitive relations for piezoelectric benders under various boundary conditions," Sens. Actuators. A. Phys. 117, 159-167 (2005). https://doi.org/10.1016/j.sna.2004.03.051