DOI QR코드

DOI QR Code

Influence of Fiber Array Direction on Mechanical Interfacial Properties of Basalt Fiber-reinforced Composites

현무암섬유 섬유 배향에 따른 현무암섬유 강화 복합재료의 기계적 계면특성 영향

  • Received : 2014.04.26
  • Accepted : 2014.08.21
  • Published : 2015.03.25

Abstract

In this work, the effect of fiber array direction including $0^{\circ}$, $0^{\circ}/90^{\circ}$, $0^{\circ}/45^{\circ}/-45^{\circ}$ was investigated for mechanical properties of basalt fiber-reinforced composites. Mechanical properties of the composites were studied using interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$) measurements. The cross-section morphologies of basalt fiber-reinforced epoxy composites were observed by scanning electron microscope (SEM). Also, the surface properties of basalt fibers were determined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). From the results, it was observed that acid treated basalt fiber-reinforced composites showed significantly higher mechanical interfacial properties than those of untreated basalt fiber-reinforced composites. These results indicated that the hydroxyl functional groups of basalt fibers lead to the improvement of the mechanical interfacial properties of basalt fibers/epoxy composites in the all array direction.

본 연구에서는 현무암섬유의 계면을 황산과 과산화수소로 처리하고 섬유 배향각을 $0^{\circ}$, $0^{\circ}/90^{\circ}$, $0^{\circ}/45^{\circ}/-45^{\circ}$로 달리하여 현무암섬유 에폭시 강화 복합재료의 기계적 특성에 미치는 영향에 대해서 살펴보았다. 기계적 특성은 층간 전단강도(ILSS)와 파괴인성 요소 중 임계응력세기인자($K_{IC}$) 측정을 통하여 고찰하였으며, 섬유의 표면미세구조 변화와 복합재료의 파단면은 주사전자현미경(SEM)으로 관찰하였다. 또한 섬유표면에 계면처리의 여부를 확인하기 위하여 적외선 분광법(FTIR)과 X-선 광전자 분광법(XPS)을 분석하였다. 실험결과 계면처리한 섬유 표면의 -OH 기(hydroxyl)가 증가됨을 확인하였다. 계면처리한 후의 기계적 특성이 계면처리 전의 기계적 특성보다 약 ~100% 증가하였다. 이러한 결과는 표면처리에 의해 섬유와 에폭시 수지 매트릭스 사이의 계면결합력을 증가시킨 것으로 판단된다.

Keywords

Acknowledgement

Grant : 분자촉매 설계 및 응용연구 사업단

References

  1. F. Dharmawan, G. Simpson, I. Herszberg, and S. John, Compos. Struct., 75, 328 (2006). https://doi.org/10.1016/j.compstruct.2006.04.020
  2. Y. Huh and J. K. Jin, Fiber. Polym., 40, 139 (2007).
  3. K. K. Chawla, Composite Materials, Springer- Verlag, New York, USA, p 58 (1987).
  4. D. C. Davis, J. W. Wikerson, J. Zhu, and D. O. O. Ayewah, Compos. Struct., 92, 2653 (2010). https://doi.org/10.1016/j.compstruct.2010.03.019
  5. S. J. Park, Interfacial Forces and Fields: Theory and Applications, J. P. Hsu, Editor, Marcel Dekker, New York, 1999.
  6. Y. Kim and J. Lim, Kor. J. Mater. Res., 2, 133 (1992).
  7. Y. Kim, I. Kwon, J. Lim, and S. Chung, Kor. J. Mater. Res., 3, 84 (1993).
  8. R. O. Ochola, K. Marcus, G. N. Nurick, and T. Franz, Compos. Struct., 63, 455 (2004). https://doi.org/10.1016/S0263-8223(03)00194-6
  9. A. B. Pereira, A. B. de Morais, M. F. S. F. de Moura, and A. G. Magalhaes, Composites(A), 36, 1119 (2005).
  10. J. Lee, Transactions of KSAE, 4, 206 (1996).
  11. Y. Kim, Transactions of KSAE, 17, 15 (2009).
  12. T. S. Anirudhan and P. S. Suchithra, J. Ind. Eng. Chem., 16, 130 (2010). https://doi.org/10.1016/j.jiec.2010.01.006
  13. X. Qu, J. Zheng, and Y. Zhang, J. Colloid Interf. Sci., 309, 429 (2007). https://doi.org/10.1016/j.jcis.2007.01.034
  14. K. R. Ko, B. H. Yang, and S. K. Ryu, Hwahak Konghak, 41, 307 (2003).
  15. A. Fukunaga and S. Ueda, Compos. Sci. Tech., 60, 249 (2000). https://doi.org/10.1016/S0266-3538(99)00118-9
  16. M. S. Hong and S. J. Park, Appl. Chem. Eng., 23, 313 (2012).
  17. S. H. Chun, W. S. Eom, and H. D. Kim, Fiber. Polym., 50, (2013).
  18. S. J. Park, J.-S. Oh, J.-R. Lee, and K. Y. Rhee, J. Korean Soc. Compos. Mater., 16, 25 (2003).
  19. H. El Didamon and H. A. Abdel Gawwad, HBRC J., 8, 170 (2012). https://doi.org/10.1016/j.hbrcj.2012.10.002
  20. B. J. Saikia and G. Parthasarathy, J. Mod. Phys., 1, 206 (2010). https://doi.org/10.4236/jmp.2010.14031
  21. N. I. Baklanova, Cement Concrete Res., 53, 1 (2013). https://doi.org/10.1016/j.cemconres.2013.06.002
  22. S. K. Ryu, B. J. Park, and S. J. Park, J. Colloid Interf. Sci., 215, 167 (1999). https://doi.org/10.1006/jcis.1999.6240
  23. D. K. Yong, H. N. Choi, J. W. Yang, and S. G. Lee, J. Adhes. Interf., 13, 24 (2012). https://doi.org/10.17702/jai.2012.13.1.024
  24. S. J. Park, L. Zhu, and F. L. Jin, Bull. Korean Chem. Soc., 33, 2513 (2012). https://doi.org/10.5012/bkcs.2012.33.8.2513
  25. T. R. King, D. F. Adams, and D. A. Buttry, Composites, 22, 380 (1991). https://doi.org/10.1016/0010-4361(91)90553-S
  26. S. J. Park, G. Y. Heo, and J. R. Lee, Polymer(Korea), 26, 80 (2002).
  27. S. J. Park, Y. S. Jang, and K. Y. Rhee, J. Colloid Interf. Sci., 245, 383 (2002). https://doi.org/10.1006/jcis.2001.8040
  28. G. A. George, N. St. John, and G. Friend, J. Appl. Polym. Sci., 42, 643 (1991). https://doi.org/10.1002/app.1991.070420310
  29. Y.-I. Tae, Y.-S. Yun, and O.-H. Kwon, J. KIIS, 17, 25 (2002).
  30. T. S. Kim and S. H. Song, J. Korean Soc. Precis. Eng., 01, 1402 (2003).
  31. S. J. Park, Polymer(Korea), 36, 494, (2012).
  32. Y. S. Jang and S. J. Park, J. Colloid Interf. Sci., 237, 91 (2001). https://doi.org/10.1006/jcis.2001.7441
  33. S. J. Park, H. J. Jeong, and C. W. Nah, Mater. Sci. Eng. A. Struct. Mater., 385, 13 (2004). https://doi.org/10.1016/j.msea.2004.03.041

Cited by

  1. Synthesis, characterization and machinability studies on thin hybrid composites with SiC nano particles vol.6, pp.6, 2015, https://doi.org/10.1088/2053-1591/ab0ddc