DOI QR코드

DOI QR Code

Synthesis, Characterization, Thermal Stability and Conductivity of New Schiff Base Polymer Containing Sulfur and Oxygen Bridges

황과 산소를 함유하는 새로운 Schiff Base 고분자의 합성, 특성분석, 열적 안정성과 전도성

  • Culhaoglu, Suleyman (Canakkale Onsekiz Mart University, Faculty of Science and Arts, Department of Chemistry, Polymer Synthesis and Analysis Lab.) ;
  • Kaya, Ismet (Canakkale Onsekiz Mart University, Faculty of Science and Arts, Department of Chemistry, Polymer Synthesis and Analysis Lab.)
  • Received : 2014.05.21
  • Accepted : 2014.08.21
  • Published : 2015.03.25

Abstract

In this study, we proposed to synthesize thermally stable, soluble and conjugated Schiff base polymer (SbP). For this reason, a specific molecule namely 4,4'-thiodiphenol which has sulfur and oxygen bridge in its structure was used to synthesize bi-functional monomers. Bi-functional amino and carbonyl monomers namely 4,4'-[thio-bis(4,1-phenyleneoxy)] dianiline (DIA) and 4,4'-[thiobis(4,1-phenyleneoxy)]dibenzaldehyde (DIB) were prepared from the elimination reaction of 4,4'-thiodiphenol with 4-iodonitrobenzene and 4-iodobenzaldehyde, respectively. The structures of products were confirmed by elemental analysis, FTIR, $^1H$ NMR and $^{13}C$ NMR techniques. The molecular weight distribution parameters of SbP were determined by size exclusion chromatography (SEC). The synthesized SbP was characterized by solubility tests, TG-DTA and DSC. Also, conductivity values of SbP and SbP-iodine complex were determined from their solid conductivity measurements. The conductivity measurements of doped and undoped SbP were carried out by Keithley 2400 electrometer at room temperature and atmospheric pressure, which were calculated via four-point probe technique. When iodine was used as a doping agent, the conductivity of SbP was observed to be increased. Optical band gap ($E_g$) of SbP was also calculated by using UV-Vis spectroscopy. It should be stressed that SbP was a semiconductor which had a potential in electronic and optoelectronic applications, with fairly low band gap. SbP was found to be thermally stable up to $300^{\circ}C$. The char of SbP was observed 29.86% at $1000^{\circ}C$.

Keywords

References

  1. R. Adams, R. E. Bullock, and W. C. Wilson, J. Am. Chem. Soc., 45, 521 (1923). https://doi.org/10.1021/ja01655a032
  2. S. K. Menon, S. K. Jogani, and Y. K. Agrawal, Rev. Anal. Chem., 19, 361 (2000).
  3. M. Grigoras, O. Catanescu, and C. I. Simionescu, Revue Roumaine de Chimie, 46, 927 (2001).
  4. C. Simionescu and D. Filip, Materiale Plastice, 37, 42 (2000).
  5. P. K. Dutta, P. Jain, P. Sen, R. Trivedi, P. K. Sen, and J. Dutta, Eur. Polym. J., 39, 1007 (2003). https://doi.org/10.1016/S0014-3057(02)00328-2
  6. Kaya and M. Gul, Polymer(Korea), 32, 295 (2008).
  7. P. Kannan, S. Raja, and P. Sakthivel, Polymer, 45, 7895 (2004). https://doi.org/10.1016/j.polymer.2004.09.013
  8. J. M. Adell, M. P. Alonso, J. Barbera, L. Oriol, M. Pinol, and J. L. Serrano, Polymer, 44, 7829 (2003). https://doi.org/10.1016/j.polymer.2003.10.032
  9. M. Grigoras and N. C. Antonoaia, Eur. Polym. J., 41, 1079 (2005). https://doi.org/10.1016/j.eurpolymj.2004.11.019
  10. D. Nepal, S. Samal, and K. E. Geckeler, Macromolecules, 36, 3800 (2003). https://doi.org/10.1021/ma0258410
  11. D. Ribera, A. Mantecon, and J. Serra, J. Polymer Sci., Part A: Polym. Chem., 40, 4344 (2002). https://doi.org/10.1002/pola.10510
  12. S. H. Jung, T. W. Lee, Y. C. Kim, D. H. Suh, and H. N. Cho, Opt. Mater., 21, 169 (2002).
  13. E. J. Choi, J. C. Ahn, L. C. Chien, C. K. Lee, W. C. Zin, D. C. Kim, and S. T. Shin, Macromolecules, 37, 71 (2004). https://doi.org/10.1021/ma0348122
  14. L. Marin, V. Cozan, M. Bruma, and V. C. Grigoras, Eur. Polym. J., 42, 1173 (2006). https://doi.org/10.1016/j.eurpolymj.2005.11.010
  15. H. Tanaka, Y. Shibahara, T. Sato, and T. Ota, Eur. Polym. J., 29, 1525 (1993). https://doi.org/10.1016/0014-3057(93)90241-7
  16. S. J. Sun, T. C. Chang, and C. H. Li, Eur. Polym. J., 29, 951 (1993). https://doi.org/10.1016/0014-3057(93)90291-M
  17. C. H. Li and T. C. Chang, J. Polym. Sci., Part A: Polym. Chem., 29, 361 (1991). https://doi.org/10.1002/pola.1991.080290309
  18. L. Marin, V. Cozan, and M. Bruma, Polym. Adv. Technol., 17, 654 (2006).
  19. U. Shukla, K. V. Rao, and A. K. Rakshit, J. Appl. Polym. Sci., 88, 153 (2003). https://doi.org/10.1002/app.11618
  20. H. C. Kim, J. S. Kim, K. S. Kim, H. K. Park, S. Baek, and M. Ree, J. Polym. Sci., Part A: Polym. Chem., 42, 825 (2004). https://doi.org/10.1002/pola.11045
  21. A. Iwan and D. Sek, Prog. Polym. Sci., 33, 289 (2008). https://doi.org/10.1016/j.progpolymsci.2007.09.005
  22. C. Hamcium, E. Hamcium, I. A. Ronova, and M. Bruma, High Perform. Polym., 9, 177 (1997). https://doi.org/10.1088/0954-0083/9/2/009
  23. M. Bruma, B. Schulz, T. Topnick, R. Dietel, B. Stiller, F. Mercer, and V. N. Reddy, High Perform. Polym., 10, 207 (1998). https://doi.org/10.1088/0954-0083/10/2/005
  24. M. Higuchi, S. Shiki, K. Ariga, and K. Yamamoto, J. Am. Chem. Soc., 123, 4414 (2001). https://doi.org/10.1021/ja004239r
  25. K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, and H. Chiba, Nature, 415, 509 (2002). https://doi.org/10.1038/415509a
  26. E. Stochmal-Pomarzanska, S. Quillard, M. Hasik, W. Turek, A. Pron, M. Lapkowski, and S. Lefrant, Synth. Met., 84, 427 (1997). https://doi.org/10.1016/S0379-6779(97)80815-6
  27. W. Luzny, E. Stochmal-Pomarzanska, and A. Pron, Synth. Met., 101, 69 (1999). https://doi.org/10.1016/S0379-6779(98)01150-3
  28. I. Kaya and S. Culhaoolu, Polimery-W, 54, 266 (2009).
  29. F. R. Diaz, J. Moreno, L. H. Tagle, G. A. East, and D. Radic, Synth. Met., 100, 187 (1999). https://doi.org/10.1016/S0379-6779(98)01484-2
  30. R. Cervini, X. C. Li, G. W. C. Spencer, A. B. Holmes, S. C. Moratti, and R. H. Friend, Synth. Met., 84, 359 (1997). https://doi.org/10.1016/S0379-6779(97)80781-3
  31. K. Colladet, M. Nicolas, L. Goris, L. Lutsen, and D. Vanderzande, Thin Solid Films, 451, 7 (2004).
  32. I. Kaya, A. Avci, and O. Gultekin, Chinese J. Polym. Sci., 30, 796 (2012). https://doi.org/10.1007/s10118-012-1176-5
  33. S. C. Ng, H. S. O. Chan, P. M. L. Wong, K. L. Tan, and B. T. G. Tan, Polymer, 39, 4963 (1998). https://doi.org/10.1016/S0032-3861(97)10029-5
  34. A. G. El-Shekeil, H. A. Al-Saady, and F. A. Al-Yusufy, New Polym. Mater., 5, 131 (1998).
  35. A. G. El-Shekeil, M. A. Khalid, and F. A. Al-Yusufy, Macromol. Chem. Phys., 202, 2971 (2001). https://doi.org/10.1002/1521-3935(20011001)202:15<2971::AID-MACP2971>3.0.CO;2-M
  36. A. W. Jeevadason, K. K. Murugavel, and M. A. Neelakantan, Renew. Sust. Energ. Rev., 36, 220 (2014). https://doi.org/10.1016/j.rser.2014.04.060

Cited by

  1. Photophysical and thermal properties of polyazomethines containing various flexible units vol.25, pp.1, 2017, https://doi.org/10.1007/s13233-017-5002-3
  2. Reaction conditions, photophysical, electrochemical, conductivity, and thermal properties of polyazomethines vol.25, pp.7, 2017, https://doi.org/10.1007/s13233-017-5072-2
  3. Synthesis and Characterizations of Poly(phenoxy-Imine)s via Catalyzed Oxidative Polymerization by Polymer–Metal Complex vol.42, pp.6, 2017, https://doi.org/10.1007/s13369-016-2390-1
  4. Synthesis, Characterization, and Optical, Electrical and Thermal Stabilities of Poly(phenoxy-imine)s Containing Methyl and Hydroxyl Groups pp.1543-186X, 2018, https://doi.org/10.1007/s11664-018-6719-2
  5. Synthesis, Characterization and Fluorescence Quantum Yields of Thermally Resisted Shinning Polymers Containing Thiophene and Azomethine Units vol.29, pp.3, 2019, https://doi.org/10.1007/s10895-019-02388-y