DOI QR코드

DOI QR Code

Fabrication for Optical Layer and Packaging Technology of Optical PCB

광 PCB의 광 회로층 제작 및 패키징 기술

  • Kim, Taehoon (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Huh, Seok-Hwan (ACI division, Samsung Electro-Mechanics) ;
  • Jeong, Myung Yung (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 김태훈 (부산대학교 인지메카트로닉스공학과) ;
  • 허석환 (삼성전기(주)) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Received : 2015.03.13
  • Accepted : 2015.03.20
  • Published : 2015.03.30

Abstract

Recently, data throughput of smart electric devices increases dramatically. There is a great interest in a new technology which exceeds the limit of electrical transmission method. Optical PCB can supplement the weakness of electrical signal processing, the research for optical PCB is very active. In this paper, we propose the thermal imprint lithography process to fabrication optical layer of optical PCB and experiment to optimize the process conditions. We confirm process time, pressure, process temperature, demolding temperature and fabricate optical interconnection structure which has $45^{\circ}$ tilted mirror surface for confirm the interconnection efficiency.

Keywords

References

  1. D. M. Kim, J. H. Ryu and M. Y. Jeong, "Optical Packaging and Interconnection Technology", J. Microelectron. Packag. Soc., 19(4), 13 (2012). https://doi.org/10.6117/kmeps.2012.19.4.013
  2. J. H. Ryu, M. K. Kim, E. S. Kim and M. Y. Jeong, "Optical PCB and Packaging Technology", J. Microelectron. Packag. Soc., 18(1), 7 (2011).
  3. D. M. Kim, T. K. Lee, T. H. Lee and M. Y. Jeong, "Design for High-Efficient Passive Optical PCB Interconnection by Using Built-in Lens Structure", J. Microelectron. Packag. Soc., 19(2), 47 (2012). https://doi.org/10.6117/kmeps.2012.19.2.047
  4. F. E. Doany, C. L. Schow, B. G. Lee, R. A. Budd, C. W. Baks, C. K. Tsang, J. U. Knickerbocker, R. Dangel, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, D. Bajkowski, F. Libsch and J. A. Kash, "Terabit/s-Class Optical PCB Links Incorporating 360Gb/s Bidirectional 850 nm Parallel Optica Transceivers", Journal of lightwave technology, 30(4), 560 (2012). https://doi.org/10.1109/JLT.2011.2177244
  5. F. Y. Chang, C. Y. Cheng, S. W. Chau, J. P. Chu and Y. C. Chen, "Fabrication of Mg-based bulk metallic glass molds by thermal imprint process", Intermetallics, 30, 35 (2012). https://doi.org/10.1016/j.intermet.2012.03.027
  6. J. J. Dumond, K. A. Mahabadi, Y. S. Yee, C. Tan, J. Y. H. Fuh, H. P. Lee and H. Y. Low, "High Resolution UV roll-toroll nanoimprinting of resin moulds and subsequent replication via thermal nanoimprint lithography", Nanotechnology, 23, 9 (2012).
  7. J. H. Ryu, T. H. Lee, I. K. Cho, C. S. Kim and M. Y. Jeong, "Simple fabrication of a double-layer multi-channel optical waveguide using passive alignment", Optics Express, 19(2), 1183 (2011). https://doi.org/10.1364/OE.19.001183
  8. K. Dhima, A. Mayer, S. Wang, S. Mollenbeck and H. C. Scheer, "A novel processing procedure for Y/UV-NIT with negative tone resists", Microelectronic Engineering, 110, 85 (2013). https://doi.org/10.1016/j.mee.2013.02.008
  9. A. Finn, B. Lu, R. Kirchner, X. Thrun, K. Richter and W. J. Fischer, "High aspect ratio pattern collapse of polymeric UVnano-imprint molds due to cleaning", Microelectronic Engineering, 110, 112 (2013). https://doi.org/10.1016/j.mee.2013.02.065

Cited by

  1. Adhesion of PDMS substrates assisted by Plasma Graft Polymerization vol.48, pp.7, 2016, https://doi.org/10.1002/sia.5985