DOI QR코드

DOI QR Code

Half-metallicity and Magnetism at the (001) Surfaces of the Quaternary Heusler Alloys CoFeCrZ (Z = Ga, Ge): A First-principles Study

4원 호이슬러 합금 CoFeCrZ(Z = Ga, Ge)의 (001) 표면에서의 자성과 반쪽금속성: 제일원리 계산 연구

  • Kim, Dong-Chul (Department of Electrical and Electronics Engineering, Halla University) ;
  • Lee, Jae Il (Department of Physics, Inha University)
  • Received : 2015.03.11
  • Accepted : 2015.04.07
  • Published : 2015.04.30

Abstract

Recently, a first-principles study led to a prediction that quaternary Heusler compounds, CoFeCrZ (Z = Ga, Ge) are excellent half-metallic ferromagnets. In this study, we investigate the electronic and the magnetic properties at the (001) surfaces of CoFeCrGa and CoFeCrGe by means of the full-potential linearized augmented plane wave (FLAPW) method within generalized gradient approximation. We considered two types of surface termination: CoFe-terminated and CrZ-terminated surfaces, Z being either Ga or Ge. From the calculated total magnetic moments and the local density of states, we found that half-metallicity is not preserved for all the surfaces. But the calculated atomic density of states showed that CrGa-terminated surface of the CoFeCrGa is almost half-metallic. The magnetic moment of the Co, Fe, or Cr atoms at the surface or subsurface layers in each system had very different values.

최근에 전자구조 계산으로 반쪽금속성을 가진다는 것이 확인된 4원 호이슬러 화합물인 CoFeCrGa와 CoFeCrGe의 (001)표면에서 반쪽금속성의 유지여부와 표면자성을 Full-potential Linearized Augmented Plane Wave 에너지띠 계산방법을 통해 연구하였다. 이를 위해 두 화합물 모두에서 각기 CoFe와 CrGa, 그리고 CrGe로 끝나는 (001)표면을 모두 고려하였다. 계산된 상태밀도로부터 두 화합물의 두가지 절단표면계 모두에서 반쪽금속성이 유지되지 못함을 알았다. 다만 CoFeCrGa에서 CrGa(001) 표면계는 그 상태밀도로부터 거의 반쪽금속성을 가짐을 알았다. 두 계에서 표면이나 표면 밑층의 Co나 Fe, 그리고 Cr 원자의 자기모멘트는 계에 따라 상당히 다른 값을 가졌다.

Keywords

References

  1. R. A. de Groot, F. M. Müller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024
  2. Y. S. Dedkov, U. Rudiger, and G. Guntherodt, Phys. Rev. B 65, 064417 (2002). https://doi.org/10.1103/PhysRevB.65.064417
  3. S. P. Lewis, P. B. Allen, and T. Sasaka, Phys. Rev. B 55, 10253 (1997). https://doi.org/10.1103/PhysRevB.55.10253
  4. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002). https://doi.org/10.1103/PhysRevB.66.174429
  5. T. Graf, C. Felser, and S. P. P. Parkin, Prog. Solid State Chem. 39, 1 (2011). https://doi.org/10.1016/j.progsolidstchem.2011.02.001
  6. H. C. Kandpal, G. H. Fecher, and C. Felser, J. Phys. D 40, 1507 (2007). https://doi.org/10.1088/0022-3727/40/6/S01
  7. J. Kuebler, G. H. Fecher, and C. Felser, Phys. Rev. B 76, 024414 (2007). https://doi.org/10.1103/PhysRevB.76.024414
  8. S. Wurmehl, G. H. Fecher, H. C. Kandpal, C. Felser, V. Ksenofontov, and H.-J. Lin, Appl. Phys. Lett. 88, 032503 (2006). https://doi.org/10.1063/1.2166205
  9. M. Kim and J. I. Lee, J. Korean Phys. Soc. 60, 1068 (2012). https://doi.org/10.3938/jkps.60.1068
  10. X. Dai, G. Liu, G. H. Fecher, C. Felser, Y. Li, and H. Liu, J. Appl. Phys. 105, 07E901 (2009). https://doi.org/10.1063/1.3062812
  11. P. Klaer, B. Balke, V. Alijani, J. Winterlik, G. H. Fecher, C. Felser, and H. J. Elmers, Phys. Rev. B 84, 144413 (2011). https://doi.org/10.1103/PhysRevB.84.144413
  12. V. Alijani, J. Winterlik, G. H. Fecher, S. S. Naghavi, and C. Felser, Phys. Rev. B 83, 184428 (2011). https://doi.org/10.1103/PhysRevB.83.184428
  13. G. Y. Gao, L. Hu, K. L. Yao, B. Luo, and N. Liu, J. Alloy. Compd. 551, 539 (2013). https://doi.org/10.1016/j.jallcom.2012.11.077
  14. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).
  15. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  16. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977). https://doi.org/10.1088/0022-3719/10/16/019
  17. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
  18. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  19. J. C. Li and Y. J. Jin, Appl. Surf. Sci. 283, 876 (2013). https://doi.org/10.1016/j.apsusc.2013.07.036
  20. X. G. Xu, D. L. Zhang, Y. Wu, X. Zhang, X. Q. Li, H. L. Yang, and Y. Jiang, Rare Metals 31, 107 (2012). https://doi.org/10.1007/s12598-012-0472-0
  21. J. L. Pan, J. Ni, and B. C. Yang, Physica B 405, 1580 (2010). https://doi.org/10.1016/j.physb.2009.12.043
  22. G. N. Li, Y. J. Jin, and J. I. Lee, Chin. Phys. B 19, 097102 (2010). https://doi.org/10.1088/1674-1056/19/9/097102

Cited by

  1. First-Principles Investigation of Equiatomic Quaternary Heusler Alloys NbVMnAl and NbFeCrAl and a Discussion of the Generalized Electron-Filling Rule vol.31, pp.1, 2018, https://doi.org/10.1007/s10948-017-4182-6