DOI QR코드

DOI QR Code

Characterizations of graded AlGaN epilayer grown by HVPE

HVPE 방법에 의해 성장된 graded AlGaN 에피층의 특성

  • Lee, Chanbin (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Jeon, Hunsoo (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Lee, Chanmi (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Jeon, Injun (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Yang, Min (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Yi, Sam Nyung (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Ahn, Hyung Soo (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Kim, Suck-Whan (Department of Physics, Andong National University) ;
  • Yu, Young Moon (LED-MCT R&BD Center, Pukyong National University) ;
  • Sawaki, Nobuhiko (Department of Electrical and Electronics Engineering, AIT)
  • 이찬빈 (한국해양대학교 전자소재공학과) ;
  • 전헌수 (한국해양대학교 전자소재공학과) ;
  • 이찬미 (한국해양대학교 전자소재공학과) ;
  • 전인준 (한국해양대학교 전자소재공학과) ;
  • 양민 (한국해양대학교 전자소재공학과) ;
  • 이삼녕 (한국해양대학교 전자소재공학과) ;
  • 안형수 (한국해양대학교 전자소재공학과) ;
  • 김석환 (안동대학교 물리학과) ;
  • 유영문 (부경대학교 LED-MCT R&BD 센터) ;
  • Received : 2015.02.05
  • Accepted : 2015.03.20
  • Published : 2015.04.30

Abstract

Compositionally graded AlGaN epilayer was grown by HVPE (hydride vapor phase epitaxy) on (0001) c-plane sapphire substrate. During the growth of graded AlGaN epilayer, the temperatures of source and the growth zone were set at $950^{\circ}C$ and $1145^{\circ}C$, respectively. The growth rate of graded AlGaN epilayer was about 100 nm/hour. The changing of Al contentes was investigated by field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS). From the result of atomic force microscope (AFM), the average of roughness in 2 inch substrate of graded AlGaN epilayer was a few nanometers scale. X-ray diffraction (XRD) with the result that the AlGaN (002) peak ($Al_{0.74}Ga_{0.26}N$) and AlN (002) peak were appeared. It seems that the graded AlGaN epilayer was successfully grown by the HVPE method. From these results, we expect to use of the graded AlGaN epilayer grown by HVPE for the application of electron and optical devices.

본 논문에서는 Al 조성이 점진적으로 변화된 AlGaN 에피층을 HVPE (hydride vapor phase epitaxy) 방법에 의하여 성장하였다. 소스영역의 온도는 $950^{\circ}C$, 성장 영역의 온도는 $1145^{\circ}C$에서 연속적으로 (0001) 사파이어 기판위에 성장되었고, AlGaN 에피층은 시간당 100 nm의 성장률을 보였다. FE-SEM 측정과 EDS 측정으로부터 성장층의 Al 변화를 확인하였으며, AFM 측정결과 2인치 기판위에 성장된 graded AlGaN 에피층의 거칠기는 수십 nm였다. Al 조성의 변화는 XRD 측정에 의하여 확인하였으며, Al 조성 74 %의 (002) AlGaN의 주피크 관측과 함께 연속적으로 (002) AlN 층의 피크가 확인되었다. 이는 하나의 층에 사파이어 기판으로부터 Al 조성이 점진적으로 변화하는 에피층을 HVPE 방법으로 얻었음을 증명하며, 이 결과로부터 다양한 광소자 및 전자소자의 응용이 기대된다.

Keywords

References

  1. S. Nakamura and G. Fasol, "The blue laser diode", (Springer, Berlin, 1997) 3.
  2. Y.J. Yu, M.Y. Ryu, P.W. Yu, D.J. Kim and S.J. Park, "Optical investigation of InGaN/GaN quantum well structures with various barrier widths", J. Korean Phys. Soc. 28 (2001) 134.
  3. J.H. Chen, Z.C. Feng, H.L. Tsai, J.R. Yang, P. Li, C. Wetzel, T. Detchprohm and J. Nelson, "Optical and structural properties of InGaN/GaN multiple quantum well structrure grown by metalorganic chemical vapor deposition", Thin Solid Films 498 (2005) 123.
  4. H.M. Kim, J.S. Choi, J.E. Oh and T.K. Yoo, "Cathodoluminescence characterization of GaN thick films grown by using the HVPE method", J. Korean Phys. Soc. 37 (2000) 956. https://doi.org/10.3938/jkps.37.956
  5. S.L. Hwang, K.H. Kim, H.S. Jeon, C.H. Lee, S.H. Hong, I.H. Heo, M. Yang, H.S. Ahn, S.W. Kim, S.C. Lee, I.S. Cho, W.T. Lim, J.H. Lee and S.K. Shee, "Characterization of a SAG-InGaN/AlGaN LED by mixed-source HVPE with a multi-sliding boat system", J. SID 16, 4 (2008) 541.
  6. M. Kim, M.J. Shin, H.S. Jeon, H.S. Ahn, S.N. Yi, S.C. Choi, S.G. Lee, Y.M. Yu and N. Sawaki, "Crystal orientation of GaN nanostructures grown on $Al_2O_3$ and Si(111) with a Zr buffer layer", Jpn. J. Appl. Phys. 51 (2012) 1.
  7. Z.C. Feng, "III-Nitride semiconductor materials" (World Scientific, Singapore, 2006) 1.
  8. Z.C. Feng, "III-Nitride semiconductor materials" (World Scientific Singapore, 2006) 17.
  9. I.S. Seo and S.J. Lee "The role of AlN buffer layer in $Al_xGa_{1-x}N/GaN$ heterostructures with x from 0.35 to 0.5 grown on sapphire (0 0 0 1)", J. Cryst. Growth 241 (2002) 297. https://doi.org/10.1016/S0022-0248(02)01307-6
  10. D. Tsvetkov, Y. Melnik, A. Davydov, A. Shapiro, O. Kovalenkov, J. B Lam, J.J. Song and V. Dmitriev, "Growth of submicron AlGaN/GaN/AlGaN heterostructures by hydride vapor phase epitaxy (HVPE)", Phys. Stat. Solidi (c) 188, 1 (2001) 429. https://doi.org/10.1002/1521-396X(200111)188:1<429::AID-PSSA429>3.0.CO;2-9
  11. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. matsushita, Y. Sugimoto and H. Kiyoku, "InGaN-based multi-quantum-well-structure laser diodes", J. Appl. Phys. Lett. 70 (1997) 14.
  12. S. Rajan, S.P. DenBaars, U.K. Mishra, H. Xing and D. Jena, "Electron mobility in graded AlGaN alloys", J. Appl. Phys. Lett. 88 (2006) 1.
  13. E.C. Yong, F. Wu, A.E. Romanov, D.A. Haeger, S. Nakamura, S.P. Denbaars, D.A. Cohen and J.S. Speck, "Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission", J. Appl. Phys. Lett. 101 (2012) 9.
  14. P. Das, N. Halder, R. Kumar, S.K. Jana, S. Kabi, B. Borisov, A. Dabiran, P. Chow and D. Biswas, "Graded barrier AlGaN/AlN/GaN heterostructure for improvved 2DEG carrier concentration and mobility", Electron Mater. Lett. 10, 6 (2014) 1087. https://doi.org/10.1007/s13391-014-4067-9
  15. A. Able, W. Wegscheider, K. Engl and J. Zweck, "Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers", J. Cryst. Growth 276, 3 (2005) 415. https://doi.org/10.1016/j.jcrysgro.2004.12.003
  16. D. Guojian, G. Liwei, X. Zhigang, C. Yao, X. Peiqiang, J. Haiqiang, Z. Junming and C. Hong, "Characteristics of GaN grown on 6H-SiC with different AlN buffers", J. Cond. 31, 3 (2010) 3.
  17. L.W. Kumar, V. Piner, E.L. Adesida and L. Ilesanmi, "DC, RF, and microwave noise performance of AlGaNGaN field effect transistors dependence of aluminum concentration", IEEE Trans. On Electron Devices. 50, 4 (2003) 1069. https://doi.org/10.1109/TED.2003.812083
  18. S. Oktyabrsky, Y. Nishi, S. Koveshnikov, W.E. Wang, N. Goel and W. Tsai, "Materials and technologies for III-V MOSFETs", Fundamentals of III-V Semiconductor MOSFETs (2010) 195.
  19. Y.L Hsiao, Y.J. Wang, C. Chang, Y.C. Weng, Y.Y. Chen, K.W. Chen, J.S. Maa and E.Y. Chang, "Investigation of the low-temperature AlGaN interlayer in AlGaN/GaN/ AlGaN double heterostructure on Si substrate", Appl. Phys. Lett. 7, 11 (2014) 1.
  20. S.G. Jung, H.S. Jeon, G.S. Lee, S.M. Bae, W.I. Yun, K.H. Kim, S.N. Yi, M. Yang, H.S. Ahn, S.W. Kim, Y.M. Yu, S.H. Cheon and H.J. Ha, "The properties of AlGaN epi layer grown by HVPE", J. Korean Cryst. Growth Cryst. Technol. 22 (2012) 11.
  21. K.H. Kim, K.S. Jang, S.L. Hwang, H.S. Jeon, W.J. Choi, M. Yang, H.S. Ahn, S.W. Kim, Y. Honda, M. Yamaguchi, N. Sawaki, J. Yoo, S.M. Lee and M. Koike, "Fabrication of SAG-AlGaN/InGaN/AlGaN LEDs by mixed-source HVPE with multi-sliding boat system", Phys. Stat. Solidi (c) 4 (2007) 29. https://doi.org/10.1002/pssc.200673508