DOI QR코드

DOI QR Code

Effective Robot Path Planning Method based on Fast Convergence Genetic Algorithm

유전자 알고리즘의 수렴 속도 향상을 통한 효과적인 로봇 길 찾기 알고리즘

  • 서민관 (중앙대학교 컴퓨터공학부) ;
  • 이재성 (중앙대학교 컴퓨터공학부) ;
  • 김대원 (중앙대학교 컴퓨터공학부)
  • Received : 2015.02.02
  • Accepted : 2015.02.24
  • Published : 2015.04.30

Abstract

The Genetic algorithm is a search algorithm using evaluation, genetic operator, natural selection to populational solution iteratively. The convergence and divergence characteristic of genetic algorithm are affected by selection strategy, generation replacement method, genetic operator when genetic algorithm is designed. This paper proposes fast convergence genetic algorithm for time-limited robot path planning. In urgent situation, genetic algorithm for robot path planning does not have enough time for computation, resulting in quality degradation of found path. Proposed genetic algorithm uses fast converging selection strategy and generation replacement method. Proposed genetic algorithm also uses not only traditional crossover and mutation operator but additional genetic operator for shortening the distance of found path. In this way, proposed genetic algorithm find reasonable path in time-limited situation.

유전자 알고리즘은 초기 해 집합을 대상으로 해 집합의 평가와 유전자 연산자의 적용, 자연 선택 등의 과정을 반복하여 최적 해를 찾는 탐색 알고리즘이다. 유전자 알고리즘을 설계할 때 사용한 선택 전략, 세대교체 방법, 유전자 연산자 등은 유전자 알고리즘의 탐색 효율성에 영향을 준다. 본 논문에서는 시간 제약이 있는 상황에서의 로봇 경로 탐색을 위해 기존의 유전자 알고리즘보다 빠르게 수렴하는 유전자 알고리즘을 제안한다. 로봇 경로 탐색 시 긴급한 상황에서 유전자 알고리즘은 연산을 위한 충분한 시간을 확보하지 못 하게 되고, 이는 최종적으로 찾아낸 경로의 질을 떨어뜨린다. 제안하는 알고리즘은 빠른 수렴을 위한 선택 전략, 세대교체 방법을 사용하였으며, 유전자 연산자로는 전통적인 교차, 돌연변이 외에 경로의 길이를 줄이기 위한 단축 연산자를 추가로 사용하였다. 이를 통해 제안하는 알고리즘은 적은 세대 수에도 빠르게 짧은 경로를 찾아낸다.

Keywords

References

  1. S. Koenig, M. Likhachev, and D. Furcy, "Lifelong planning A*", Artif. Intell. Vol. 155, No. 1, pp. 93-146, May 2004. https://doi.org/10.1016/j.artint.2003.12.001
  2. A. Stentz, "Optimal and efficient path planning for partially-known environments", Proc. IEEE Conf. Robotics and Automation, pp. 3310-3317, San Diego, USA, May 1994.
  3. H. Liu, N. Stoll, S. Junginger, and K. Thurow, "A Floyd-genetic algorithm based path planning system for mobile robots in laboratory automation", Proc. IEEE Int. Conf. Robotics and Biomimetics, pp. 1550-1555, Guangzhou, China, Dec. 2012
  4. Q. Li,, W. Zhang, Y. Yin, Z. Wang, and G. Liu, "An improved genetic algorithm of optimum path planning for mobile robots", Proc. Int. Conf. Intelligent Systems Design and Applications, pp. 637-642, Jinan, China, Sept. 2013.
  5. C. Tsai, H. Huang, and C. Chan, "Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation". IEEE Trans. Ind. Electron, Vol. 58, No. 10, pp. 4813-4821, Jan. 2011. https://doi.org/10.1109/TIE.2011.2109332
  6. M. Naderan-Tahan, and M. Manzuri-Shalmani, "Efficient and safe path planning for a mobile robot using genetic algorithm", Proc. IEEE Congr. Evolutionary Computation, pp. 2091-2097, Trondheim, Norway. May 2009.
  7. S.G. Cui, and J.L. Dong, "Detecting robots path planning based on improved genetic algorithm", Proc. Int. Conf. Instrumentation, Measurement, Computer, Communication and Control, pp. 204-207, Shenyang, China, Sept. 2013.
  8. J.H. Kim, Y.H. Kim, S.H. Choi, and I.W. Park, "Evolutionary multi-objective optimization in robot soccer system for education", IEEE Comput. Intell. Mag., Vol. 4, No. 1, pp. 31-41, Jan. 2009. https://doi.org/10.1109/MCI.2008.930985
  9. S. Tachi, and K. Komoriya, "Guide dog robot", Autonomous Mobile Robots: Control, Planning, and Architecture, pp. 360-367, 1984.
  10. J.M. Johnson, V. Rahmat-Samii, Venetic algorithms in engineering electromagnetics". IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, pp. 7-21, Aug. 1997. https://doi.org/10.1109/74.632992
  11. M. Srinivas, and L.M. Patnaik, "Genetic algorithms: A survey", Computer, Vol. 27, No. 6, pp. 17-26, June. 1994. https://doi.org/10.1109/2.294849
  12. A. Tuncer, and M. Yildirim, "Dynamic path planning of mobile robots with improved genetic algorithm", Comput. Electr. Eng., Vol. 38, pp. 1564-1572, Nov. 2012. https://doi.org/10.1016/j.compeleceng.2012.06.016
  13. M. Davoodi,, F. Panahi, A. Mohades, and S. N. Hashemi, "Multi-objective path planning in discrete space", Appl. Soft Comput., Vol. 13, No. 1, pp. 709-720, Jan. 2013. https://doi.org/10.1016/j.asoc.2012.07.023
  14. Y. Hu, and S. Yang, "A knowledge based genetic algorithm for path planning of a mobile robot", Proc. IEEE Int. Conf. Robotics and Automation, pp. 4350-4355, New Orleans, USA, May 2004.
  15. M. Gemeinder, and M. Gerke, "GA-based path planning for mobile robot systems employing an active search algorithm", Appl. Soft Comput., Vol. 3, No. 2, pp. 149-158, Sept. 2003. https://doi.org/10.1016/S1568-4946(03)00010-3
  16. J. Lee, B.Y. Kang, and D.W. Kim, "Fast genetic algorithm for robot path planning", Electr. Lett., Vol. No. 23, pp. 1449-1451, Nov. 2013.
  17. M. Samadi, and M.F. Othman, "Global Path Planning for Autonomous Mobile Robot using Genetic Algorithm", Proc. Int. Conf. Signal-Image Technology & Internet-Based Systems, pp. 726-730, Kyoyo, Japan, Dec. 2013.