DOI QR코드

DOI QR Code

Prediction for Large Deformation of Cantilever Beam Using Strains

변형률을 이용한 외팔보의 구조 대변형 예측

  • Park, Sunghyun (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, In-Gul (Department of Aerospace Engineering, Chungnam National University) ;
  • Lee, Hansol (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Min-Sung (Agency for Defense Development)
  • Received : 2014.12.04
  • Accepted : 2015.04.15
  • Published : 2015.05.01

Abstract

The UAV's wing has high aspect ratio that is suitable for the high altitude and long endurance. Knowing the real-time deformation of wing structure in flight, it can be utilized in structural health and loading status monitoring, improvement of control effectiveness and extraordinary vibration phenomena using displacement-strain relationship. In this paper, nonlinear displacement prediction algorithm was developed for prediction of large structural deflection in flight. The algorithm was validated through the comparison with finite element analysis results and also experimental results for several large tip displacements of cantilever beam. The predicted displacements using strains are agreed well with the measured values from laser displacement sensor.

무인기의 날개는 고고도 장기체류에 적합하도록 가로세로비가 크며, 비행 중 구조 대변형이 발생한다. 비행 중 날개 구조의 실시간 변형 상태 파악을 위해 변위-변형률 관계를 이용하여 비행체의 구조 건전성 및 관련 하중 상태 평가, 이상 진동 현상 발견 및 조종성 향상과 같은 영역에서 활용할 수 있다. 본 논문에서는 비행 중 변형이 발생하는 날개 구조물을 외팔보로 가정하여 구조 대변형을 보다 간편하게 예측하기 위한 변형률 기반의 비선형성을 고려한 변위 예측 알고리즘을 작성하였다. 변위 예측식은 외팔보의 다양한 끝단 변위 조건에서 이루어진 구조 실험과 유한요소 해석 결과의 비교를 통하여 검증하였다. 변형률은 스트레인 게이지로부터 취득한 값을 사용하였으며, 변형률을 이용하여 예측된 변위는 레이저 변위 센서로 측정한 변위와 잘 일치하였다.

Keywords

References

  1. Lockyer, A. J., Alt, K. H., Coughlin, D. P., Durham, M. D., and Kudva, J. N., "Design and Development of a Conformal Load-bearing Smart-skin Antenna : Overview of the AFRL Smart Skin Structures Technology Demonstration (S3TD)," SPIE Smart Structures and Materials, Vol. 3674, 1999, pp. 410-424.
  2. Alt, K. H., Lockyer, A. J., Coughlin, D. P., and Kudva, J. N., "Overview of the DoD's RF Multifunction Structural Aperture (MUSTRAP) Program," Industrial and commercial applications of smart structures technologies, SPIE Smart Structures and Materials, Vol. 4334, 2001, pp. 137-146.
  3. Jun, O. C., "Survey of Real-Time In-Flight Wing Deformation Measurements," Information and Control Symposium, Apr. 2012, pp. 141-142.
  4. Kim, I. G., Lee, H. Y., Kim, J. W., Lee, K. A., and Kim, H. I., "Structural Health and Usage Monitoring System-Recent Advances," KSAS Fall Conference, Nov. 2003, pp. 943-950.
  5. Ryu, C. Y., Koo, B. Y., and Hong, C. S., "A Study on the Development of Fiber Bragg Grating Sensor System for the Strain Monitoring of Smart Structures," J. of the Korean Society for Aeronautical and Space Sciences, Vol. 28, No. 4, 2000, pp. 58-66.
  6. Richards, L., Parker, A., Ko, W. L., and Piazza, A., "Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors," Space Sensors and Measurements Techniques Workshop, Aug. 2008.
  7. Kang, L. H., Kim, D. K., Rapp, S., Baier, H., and Han, J. H., "Dynamic Deformation Estimation of Structures Using Fiber Optic Strain Sensors," Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 16, No. 12, 2006, pp. 1279-1285. https://doi.org/10.5050/KSNVN.2006.16.12.1279
  8. Mathia, K., Priddy, K., "Real-time Geometrical Approximation of Flexible Structures using Neural Networks," IEEE International Conference on Systems, Man, and Cybernetics, Oct. 1995.
  9. NLR, "AIRBUS 380 Wing Deflection Measured," NLR Annual Report, 2009, p. 16.
  10. Jenkins, T. P. and AIAA Aerodynamic Measurement Technology Technical Committee, "Aerodynamic Measurement Technology," Aerospace America-Year in Review, AIAA, 2011, p. 13.
  11. Ko, W. L., Richards, W. L., and Tran, V. T., Displacement Theories for In-flight Deformed Shape Predictions of Aerospace Structures, NASA Technical Publication, Edwards, CA, 2007.
  12. Ko, W. L. and Richards, W. L., Method for Real-time Structure Shape-sensing, US Patent 7520176B1, 2009.
  13. Bisshopp, K. E. and Drucker, D. C., "Large Deflection of Cantilever Beams," Quarterly of Applied Math, Vol. 3 No. 3, 1945, pp. 272-275.
  14. Ang Jr. M. H., Wei W., and Tek-Seng L., "On the Estimation of the Large Deflection of a Cantilever Beam," Proceedings of International Conference on Industrial Electronics, Control, and Instrumentation (IECON), IEEE, Vol. 3, Nov. 1993, pp. 1604-1609.
  15. Li C., "An Integral Approach for Large Deflection Cantilever Beams," International Journal of Non-linear Mechanics, Vol. 45, No. 3, 2010, pp. 301-305. https://doi.org/10.1016/j.ijnonlinmec.2009.12.004