DOI QR코드

DOI QR Code

The Effect of Overdesign on Titan Rocket Engine Reliability and Development Cost

과설계가 타이탄 로켓엔진의 신뢰도 및 개발비용에 미치는 영향

  • Kim, Kyungmee O. (Department of Industrial Engineering, Konkuk University) ;
  • Hwang, Junwoo (Department of Industrial Engineering, Konkuk University)
  • Received : 2014.04.22
  • Accepted : 2015.03.10
  • Published : 2015.04.01

Abstract

Engine derating is often considered for reliability benefits because lower power operation reduces its failure probability. To be derated during operation, however, the engine must be initially overdesigned. The engine overdesign is cost effective only if reliability increased from derating is enough to offset the initial increase in the development cost caused from the overdesign. The purpose of this paper is to provide an analytical model to consider a trade-off between the engine overdesign and derating. We use a logistic regression model to explain reliability growth in the number of hot firing tests for a fixed power level. Using the Transcost model with the reliability growth model, we show that 10% overdesign of Titan rocket engine decreases its development cost by about 9% and 23% depending on the reliability requirement. We also point out that such a cost reduction depends on the fuel type a rocket uses.

로켓 엔진을 설계추력보다 낮은 추력으로 운용하면 신뢰도가 증가하는 것으로 알려져 있다. 따라서 엔진을 디레이팅하여 증가하는 신뢰도가 엔진을 과설계하기 위해 증가된 개발비를 상쇄할 수 있다면 개발비를 최소화하기 위해 엔진의 과설계를 고려할 수 있다. 본 연구의 목적은 엔진 과설계와 디레이팅이 신뢰도 및 비용에 미치는 영향을 설명하는 모형을 개발하고자 하는 것이다. 타이탄 로켓 엔진의 운용추력수준 및 연소시험횟수에 따른 신뢰도 자료에 로지스틱 회귀모형을 적합하여 신뢰도 성장을 모형화하고 Transcost 비용모형을 이용하여 엔진을 10% 과설계 하면 신뢰도 요구값에 따라 엔진 개발비를 9%에서 23% 감소시킬 수 있음을 보였다. 또한 이러한 엔진 개발비의 감소는 엔진이 사용하는 연료에 따라 달라짐을 지적하였다.

Keywords

References

  1. Hammond, W.E. Space Transportation : A Systems Approach to Analysis and Design, AIAA Education Series, Washington D.C., 1999.
  2. Huang, Z., Fint, J.A., and Kuck, F.M., Key Reliability Drivers of Liquid Propulsion Engines and a Reliability Model for Sensitivity Analysis, In: The Boeing Company, Rocketdyne Propulsion & Power, 41st AIAA Joint Propulsion Conference & Exhibit, Vol. 10, 2005.
  3. Seo, Y-K, and Oh, B-S, KSLV-II Cost Estimate using TRANSCOST 7.1, Aerospace Engineering and Technology, Vol. 6, No.2, 2007, pp.119-125.
  4. Yoo, I-S, Seo, Y-K, Lee, J-H, and Oh, B-S, Application of Cost Estimation to Space Launch Vehicle Development Program, Journal of the Society of Korea Industrial and Systems Engineering, Vol.30, No.3, 2007, pp.165-173.
  5. Koelle, D.E., Handbook of Cost Engineering for Space Transportation Systems with TRANSCOST 8.0, 2010, TransCostSystem.
  6. Adams, J.D., Hickman, R.A., and Mayberry J.P., Payload Interface Standardization, 46th International Astronatuical Congress, October 2-6, Oslo, Norway, 1995.
  7. Kececioglu, D. Reliability Engineering Handbook, Volume 2, 1991.
  8. NASA, Exploration Systems Architecture Study, Final Report, Appendix 6D, 2005 November, pp. 194-195.
  9. Kim, K.O. and Hwang, J.W., A Methodology for Estimating Reliability and Development Cost of a New Liquid Rocket Engine-focused on Staged Combustion Cycle with LOX/LH2, Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 42, No. 2, 2014, pp. 437-443. https://doi.org/10.5139/JKSAS.2014.42.5.437