DOI QR코드

DOI QR Code

Preparation of novel NF membrane via interfacial cross-linking polymerization

  • Lehi, Arash Yunessnia (Institute of Nanoscience and Nanotechnology, University of Kashan) ;
  • Akbari, Ahmad (Institute of Nanoscience and Nanotechnology, University of Kashan) ;
  • Soleimani, Hosna (Institute of Nanoscience and Nanotechnology, University of Kashan)
  • Received : 2013.09.25
  • Accepted : 2014.01.08
  • Published : 2015.05.25

Abstract

The goal of present work is the preparation of a novel positively charged nanofiltration (NF) membrane and its development for the cation removal of aqueous solutions. This NF membrane was fabricated by the surface modification of polysulfone (PSf) ultrafiltration support. The active top-layer was formed by interfacial cross-linking polymerization of poly(ethyleneimine) (PEI) with p-xylylene dichloride (XDC) and then quaternized with methyl iodide to form a perpetually positively charged layer. In order to improve the efficiency of nanofiltration membrane, the concentration of PEI, XDC and methyl iodide solutions, PEI coating and cross-linking time have been optimized. As a result, a high water flux and high $CaCl_2$ rejection (1,000 ppm) was obtained for the composite membrane with values of $18.29L/m^2.h$ and 93.62% at 4 bar and $25^{\circ}C$, respectively. The rejections of NF membrane for different salt solutions followed the order of $Na_2SO_4$ < $MgSO_4$ < NaCl < $CaCl_2$. Molecular weight of cut off (MWCO) was calculated via retaining of PEG solutions with different molecular weights that finally, it revealed the Stokes and hydrodynamic radius of 1.457 and 2.507 nm on the membrane selective layer, respectively. The most efficient positively charged nanofiltration membrane exhibited a $Ni^{2+}$ rejection of 96.26% for industrial wastewater from Shamse Hadaf Co. (Kashan, Iran).

Keywords

References

  1. Afonso, M.D., Hagmeyer, G. and Gimbel, R. (2001), "Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions", Sep. Purif. Technol., 22-23, 529-541. https://doi.org/10.1016/S1383-5866(00)00135-0
  2. Akbari, A., Desclaux, S., Rouch, J.C., Aptel, P. and Remigy, J.C. (2006), "New UV-photografted nanofiltration membranes for the treatment of colored textile dye effluents", J. Membr. Sci., 286(1-2), 342-350. https://doi.org/10.1016/j.memsci.2006.10.024
  3. Akbari, A., Desclaux, S., Rouch, J.C. and Remigy, J.C. (2007), "Application of nanofiltration hollow fibre membranes, developed by photografting, to treatment of anionic dye solutions", J. Membr. Sci., 297(1-2), 243-252. https://doi.org/10.1016/j.memsci.2007.03.050
  4. Baker, R.W. (2004), Membrane Technology and Applications, John Wiley & Sons, Chichester, England.
  5. Causserand, C., Rouaix, S., Akbari, A. and Aimar, P. (2004), "Improvement of a method for the characterization of ultrafiltration membranes by measurements of tracers retention", J. Membr. Sci., 238(1-2), 177-190. https://doi.org/10.1016/j.memsci.2004.04.003
  6. Chiang, Y.C., Hsub, Y.Z., Ruaan, R.C., Chuang, C.J. and Tung, K.L. (2009), "Nanofiltration membranes synthesized from hyperbranched polyethyleneimine", J. Membr. Sci., 326(1), 19-26. https://doi.org/10.1016/j.memsci.2008.09.021
  7. Derakhsheshpoor, R., Homayoonfal, M., Akbari, A. and Mehrnia, M.R. (2013), "Amoxicillin separation from pharmaceutical wastewater by high permeability polysulfone nanofiltration membrane", J. Environ. Health Sci. Eng., 11(9), 10 p. https://doi.org/10.1186/2052-336X-11-10
  8. Dirir, Y.I., Hanafi, Y., Ghoufi, A. and Szymczyk, A. (2015), "Theoretical Investigation of the Ionic Selectivity of Polyelectrolyte Multilayer Membranes in Nanofiltration", Langmuir, 31(1), 451-457. DOI: 10.1021/la5044188
  9. Du, R. and Zhao, J. (2004), "Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane", J. Membr. Sci., 239(2), 183-188. https://doi.org/10.1016/j.memsci.2004.03.029
  10. Huang, R., Chen, G., Sun, M., Hu, Y. and Gao, C. (2006), "Studies on nanofiltration membrane formed by diisocyanate cross-linking of quaternized chitosan on poly(acrylonitrile) (PAN) support", J. Membr. Sci., 286(1-3), 237-244. https://doi.org/10.1016/j.memsci.2006.09.045
  11. Huang, R., Chen, G., Sun, M. and Gao, C. (2009), "Preparation and characterization of composite NF membrane from a graft copolymer of trimethylallyl ammonium chloride onto chitosan by toluene diisocyanate cross-linking", Desalination, 239(1-3), 38-45. https://doi.org/10.1016/j.desal.2008.02.023
  12. Kravets, L., Dmitriev, S., Lizunov, N., Satulu, V., Mitu, B. and Dinescu, G. (2010), "Properties of poly(ethylene terephthalate) track membranes with a polymer layer obtained by plasma polymerization of pyrrole vapors", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(5), 485-492. https://doi.org/10.1016/j.nimb.2009.11.014
  13. Lau, W.J., Ismail, A.F., Misdan, N. and Kassim, M.A. (2012), "A recent progress in thin film composite membrane: A review", Desalination, 287, 190-199. https://doi.org/10.1016/j.desal.2011.04.004
  14. Li, N.N., Fane, A.G., Winston Ho, W.S. and Matsuura, T. (2008), Advanced Membrane Technology and Applications, John Wiley & Sons, Hoboken, NJ, USA.
  15. Li, L., Zhang, S. and Zhang, X. (2009), "Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3',5,5'-biphenyl tetraacyl chloride and piperazine", J. Membr. Sci., 335(1-2), 133-139. https://doi.org/10.1016/j.memsci.2009.03.011
  16. Li, X.L., Zhu, L.P., Xu, Y.Y., Yi, Z. and Zhu, B.K. (2011), "A novel positively charged nanofiltration membrane prepared from N,N-dimethylaminoethyl methacrylate by quaternization cross-linking", J. Membr. Sci., 374(1-2), 33-42. https://doi.org/10.1016/j.memsci.2011.03.006
  17. Oatley, D.L., Llenas, L., Aljohani, N.H.M., Williams, P.M., Martinez-Llado, X., Rovira, M. and de Pablo, J. (2013), "Investigation of the dielectric properties of nanofiltration membranes", Desalination, 315, 100-106. https://doi.org/10.1016/j.desal.2012.09.013
  18. Ouyang, L., Malaisamy, R. and Bruening, M.L. (2008), "Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations", J. Membr. Sci., 310(1-2), 76-84. https://doi.org/10.1016/j.memsci.2007.10.031
  19. Rahimpour, A., Jahanshahi, M., Mortazavian, N., Madaeni, S.S. and Mansourpanah, Y. (2010), "Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening", Appl. Surf. Sci., 256(6), 1657-1663. https://doi.org/10.1016/j.apsusc.2009.09.089
  20. Sabde, A.D., Trivedi, M.K., Ramachandhran, V., Hanra, M.S. and Misra, B. (1997), "Casting and characterization of cellulose acetate butyrate based UF membranes", Desalination, 114(3), 223-232. https://doi.org/10.1016/S0011-9164(98)00014-9
  21. Silva, V., Martin, A., Martinez, F., Malfeito, J., Pradanos, P., Palacio, L. and Hernandez, A. (2011), "Electrical characterization of NF membranes. A modified model with charge variation along the pores", Chem. Eng. Sci., 66(13), 2898-2911. https://doi.org/10.1016/j.ces.2011.03.025
  22. Szymczyk, A., Fatin-Rouge, N. and Fievet, P. (2007), "Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes", J. Colloid Interface Sci., 309(2), 245-252. https://doi.org/10.1016/j.jcis.2007.02.005
  23. Van der Bruggen, B. and Vandecasteele, C. (2003), "Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry", Environ. Pollut., 122(3), 435-445. https://doi.org/10.1016/S0269-7491(02)00308-1
  24. Van der Bruggen, B., Manttari, M. and Nystrom, M. (2008), "Drawbacks of applying nanofiltration and how to avoid them: A review", Sep. Purif. Technol., 63(2), 251-263. https://doi.org/10.1016/j.seppur.2008.05.010
  25. Wang, X., Zhou, L., Ma, Y., Li, X. and Gu, H. (2009), "Control of aggregate size of polyethyleneiminecoated magnetic nanoparticles for magnetofection", Nano Res., 2(5), 365-372. https://doi.org/10.1007/s12274-009-9035-6
  26. Wei, X.Z., Zhu, L.P., Deng, H.Y., Xu, Y.Y., Zhu, B.K. and Huang, Z.M. (2008), "New type of nanofiltration membrane based on crosslinked hyperbranched polymers", J. Membr. Sci., 323(2), 278-287. https://doi.org/10.1016/j.memsci.2008.06.014
  27. Xia, T., Kovochich, M., Liong, M., Meng, H., Kabehie, S., George, S., Zink, J.I. and Nel, A.E. (2009), "Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs", ACS Nano, 3(10), 3273-3286. https://doi.org/10.1021/nn900918w
  28. Yang, Y.F., Wan, L.S. and Xu, Z.K. (2009), "Surface hydrophilization of microporous polypropylene membrane by the interfacial crosslinking of polyethylenimine", J. Membr. Sci., 337(1-2), 70-80. https://doi.org/10.1016/j.memsci.2009.03.023
  29. Zhang, Q., Wang, H., Zhang, S. and Dai, L. (2011), "Positively charged nanofiltration membrane based on cardo poly(arylene ether sulfone) with pendant tertiary amine groups", J. Membr. Sci., 375(1-2), 191-197. https://doi.org/10.1016/j.memsci.2011.03.033
  30. Zhao, Z.P., Li, J., Zhang, D.X. and Chen, C.X. (2004), "Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: I. Graft of acrylic acid in gas", J. Membr. Sci., 232(1-2), 1-8. https://doi.org/10.1016/j.memsci.2003.11.009
  31. Zhong, P.S., Widjojo, N., Chung, T.-S., Weber, M. and Maletzko, C. (2012), "Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater", J. Membr. Sci., 417-418, 52-60. https://doi.org/10.1016/j.memsci.2012.06.013

Cited by

  1. Enhancement of hydrophilicity and anti-fouling property of polysulfone membrane using amphiphilic nanocellulose as hydrophilic modifier vol.10, pp.6, 2015, https://doi.org/10.12989/mwt.2019.10.6.461