DOI QR코드

DOI QR Code

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response -

폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -

  • Kang, Ki-Yeob (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Choi, Kwang-Ho (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Ryu, YongHee (Central Research Institute, Samsung Heavy Industries Pangyo R&D Center) ;
  • Choi, JaeWoong (Central Research Institute, Samsung Heavy Industries Pangyo R&D Center) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 강기엽 (부산대학교 조선해양공학과) ;
  • 최광호 (부산대학교 조선해양공학과) ;
  • 류용희 (삼성중공업 판교 R&D센터) ;
  • 최재웅 (삼성중공업 판교 R&D센터) ;
  • 이제명 (부산대학교 조선해양공학과)
  • Received : 2015.01.14
  • Accepted : 2015.01.23
  • Published : 2015.04.30

Abstract

The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

가스 생산용 해양플랜트 설비에서 발생할 수 있는 폭발사고의 경우, 구조 시스템의 기하학적 특성이나, 바람, 가스 누출율 등과 같은 환경적 조건에 의해 피해 규모의 범위가 상당하다. 따라서 폭발파에 의한 구조 부재의 응답을 분석하기 위해서는 이러한 조건들을 고려한 가스폭발 수치해석 과정이 반드시 필요하다. 본 연구에서는 FPSO 탑사이드의 형상 및 장비 배치와 같은 세부적인 부분까지 고려하여 폭발해석을 수행하였으며, 이를 바탕으로 획득한 하중 이력들의 특성을 분석하였다. 또한 다양한 형태로 나타나는 폭발하중 이력들 중 구조물 손상에 직접적으로 영향을 미칠 수 있는 최대 압력과 지속시간들을 고려하여 유한요소해석 시 하중조건으로 적용한 후, 부재의 응답특성에 관한 분석을 수행하였다. 유한요소해석 모델은 실제 구조물에 적용이 가능하고, 복잡한 형상을 이상화한 단 자유도 및 다 자유도 모델을 사용하였다. 정 압력 및 부 압력단계의 최대 압력이 증가함에 따라 구조 부재의 최대 응답이 증가하였고, 부 압단계에서 하중 지속시간이 증가함에 따라 구조물의 최대 변위가 증가는 경향을 보였다.

Keywords

References

  1. Bjerketvedt, D., Bakke, J.R., Wingerden, K.V. (1997) Gas Explosion Handbook, J. Hazard. Mater., 52, pp.1-150. https://doi.org/10.1016/S0304-3894(97)81620-2
  2. Chopra, A.K. (2007) Dynamics of Structures Third Edition, Pearson International Edition, pp.1-865.
  3. Dobashi, R., Kawamura, S., Kuwana, K., Nakayama, Y. (2011) Consequence Analysis of Blast Wave from Accidental Gas Explosions, Proc. Combust. Inst., 33, pp.2295-2301. https://doi.org/10.1016/j.proci.2010.07.059
  4. Gexcon (2009) FLACS v9.0 User's Manual, CMR Gexcon, pp.1-262.
  5. Guowei, M., Jingde, L., Madhat, A.J. (2014) Accuracy Improvement in Evaluation of Gas Explosion over Pressures in Congestions with Safety Gaps, J. Loss Prev. Process Industries, 32, pp.358-366 https://doi.org/10.1016/j.jlp.2014.10.007
  6. Health & Safety Executive (2006) Design, Materials and Connections for Blast-Loaded Structures, Research Report 405, pp.1-80
  7. Jianmin, L., Shibo, X., Feng, X. (2013) Simplified Model and Experimental Analysis of the Blast Wave Overpressure, J. Theor. & Appl. Inf. Tech., 48(2), pp.1231-36.
  8. Jo, E.S., Kim, M.S., Park, J.Y., Lee, Y.K. (2014) Behavior of Prestressed Concrete Panels under Blast Load, J. Comput. Struct. Eng. Inst. Korea, 27(2), pp.113-120. https://doi.org/10.7734/COSEIK.2014.27.2.113
  9. Kwag, J.I., Kim, J.K., Park, J.H. (2008) The Dynamic Behavior of Steel Structure under Blast Load, J. Comput. Struct. Eng. Inst. Korea, pp.313-318
  10. Lee, K.K., Kim, T.J., Kim, E.S., Kim, J.K. (2007) Behavior of Steel Columns subjected to Blast Loads, J. Korea Conc. Inst., 23(7), pp.37-44.
  11. Norazahar, N., Khan, F., Veitch, B., Mackinnon, S. (2014) Human and Organizational Factors Assessment of the Evacuation Operation of BP Deepwater Horizon Accident, J. Satety Sci., 70, pp.41-49.
  12. Nwankwo, E., Fallah, A.S., Langdon, G.S., Louca, L.A. (2013) Inelastic Deformation and Failure of Partially Strengthened Profiled Blast Walls, Eng. Struct., 46, pp.671-686. https://doi.org/10.1016/j.engstruct.2012.08.019
  13. Olave, R.H., Filippo, G., Parnkul, M. (2013) Equivalent Cloud Methods used for Explosion Risk and Consequence Studies, J. Loss Prev. Process Industries, 26, pp.511-527. https://doi.org/10.1016/j.jlp.2012.07.006
  14. Wang, B.T., Cheng, D.K. (2008) Modal Analysis of mdof System by using Free Vibration Response Data only, J. Sound & Vib., 311, pp.737-755. https://doi.org/10.1016/j.jsv.2007.09.030
  15. Yang, M., Ahmari, S. (2013) Investigation of Effect of Negative Phase of Blast Loading on Cable Net Curtain Walls through the Linearized Stiffness Matrix Method, Int. J. Impact Eng., 61, pp.36-47. https://doi.org/10.1016/j.ijimpeng.2013.06.004