DOI QR코드

DOI QR Code

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part B: Analysis for the Effect of Explosion Loading Time According to the Natural Period for Target Structures -

폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part B: 고유주기에 따른 폭발하중 지속시간의 영향 분석 -

  • Kang, Ki-Yeob (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Choi, Kwang-Ho (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Ryu, YongHee (Central Research Institute, Samsung Heavy Industries Pangyo R&D Center) ;
  • Choi, JaeWoong (Central Research Institute, Samsung Heavy Industries Pangyo R&D Center) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 강기엽 (부산대학교 조선해양공학과) ;
  • 최광호 (부산대학교 조선해양공학과) ;
  • 류용희 (삼성중공업 판교 R&D센터) ;
  • 최재웅 (삼성중공업 판교 R&D센터) ;
  • 이제명 (부산대학교 조선해양공학과)
  • Received : 2015.01.14
  • Accepted : 2015.01.22
  • Published : 2015.04.30

Abstract

Offshore structures for the gas production are exposed to the risk of gas leaks, and gas explosions can result in fatal damages to the primary structures as well as secondary structures. To minimize the damage from the critical accidents, the study of the dynamic response of structural members subjected to blast loads must be conducted. Furthermore, structural dynamic analysis has to be performed considering relationships between the natural frequency of structural members and time duration of the explosion loading because the explosion pressure tends to increase and dissipate within an extremely short time. In this paper, the numerical model based on time history data were proposed considering the negative phase pressure in which considerable negative phase pressures were observed in CFD analyses of gas explosions. The undamped single degree of freedom(SDOF) model was used to characterize the dynamic response under the blast loading. A blast wall of FPSO topside was considered as an essential structure in which the wall prevents explosion pressures from the process area to utility and working areas. From linear/nonlinear transient analyses using LS-DYNA, it was observed that dynamic responses of structures were influenced by significantly the negative time duration.

가스 생산용 해양플랜트 설비의 경우 폭발의 위험에 노출되어 있으며, 폭발사고는 구조물의 안전성에 치명적인 영향을 미칠 수 있다. 따라서, 이러한 폭발사고에 의한 피해를 최소화하기 위해서는, 폭발하중에 의한 구조부재의 동적응답 특성을 명확히 파악할 필요가 있다. 폭발하중의 경우 매우 짧은 시간 동안에 구조물에 가격되었다가 소멸되기 때문에 구조부재의 고유주기 및 폭발하중의 지속시간을 고려한 동적응답 평가가 필수적으로 요구된다. 일반적으로 가스 폭발하중의 경우, 부 압력단계가 전체 하중 이력에서 상당 부분 존재하며, 본 연구에서는 이러한 부 압력단계의 형상에 따라 총 하중 지속시간을 결정하는 하중 모델을 제안하였다. 방화벽은 폭발사고 시 장비 및 인명 피해를 방지하고자 FPSO 탑사이드 모듈 사이에 배치되는 구조부재이므로 폭발하중에 의한 응답이력 특성 분석이 반드시 필요하다. 때문에 무 감쇠 단 자유도 모델에 가스 폭발하중을 적용하여 변위응답 특성을 분석하였으며, 평판으로 구성된 방화벽의 FE 모델을 이용한 하중 지속시간과 구조부재들의 고유주기를 고려한 응답 특성을 분석하였다. LS-DYNA를 이용한 선형/비선형 구조해석 분석결과, 부 압력단계의 지속시간이 구조물의 동적응답에 큰 영향을 주는 것을 보였다.

Keywords

References

  1. Chopra, A.K (2007) Dynamics of Structures Third Edition, Pearson International Edition, pp.1-865.
  2. Chung, K., Yuen, S., Nurick G.N. (2005) Experimental and Numerical Studies on the Response of Quadrangular Stiffened Plates, Part 1: Subjected to Uniform Blast Load, Int. J. Impact Eng., 31(1), pp.55-83. https://doi.org/10.1016/j.ijimpeng.2003.09.048
  3. Det Norske Veritas (DNV) (2010) Design Against Accidental Loads, Recommended Practice DNV-RPC204, pp.1-53.
  4. Hwang, I.H. (2012) Elasto-Plastic Response of Structural Elements Subjected to Blast Pressure, Posco Eng. Tech. Note, 28(1), pp.18-28.
  5. Kang, K.Y., Choi, K.H., Ryu, Y.H., Choi, J.W., Lee, J.M. (2014) The Effect of Negative Pressure Phase in Blast Load Profile on Blast Wall of Offshore Plant Topside, J. Comput. Struct. Eng. Inst. Korea, 27(4), pp.281-288. https://doi.org/10.7734/COSEIK.2014.27.4.281
  6. Kim, B.J., Kim, B.H., Sohn, J.M., Paik, J.K., Seo, J.K. (2012) Parametric Study on Explosion Impact Response Characteristics of Offshore Installation's Corrugated Blast Wall, Korean Soc. Ocean Eng., 26(3), pp.46-54.
  7. Kim, H.J., Nam, J.W., Kim, S.B., Kim, J.H., Byun, K.J. (2007) Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load, J. Korea Concr. Inst., 19(2), pp.241-250. https://doi.org/10.4334/JKCI.2007.19.2.241
  8. Langdon, G.S., Schleyer, G.K. (2006) Deformation and Failure of Profiled Stainless Steel Blast Wall Panels, Part III: Finite Element Simulations and Overall Summary, Int. J. Impact Eng., 32, pp.988-1012. https://doi.org/10.1016/j.ijimpeng.2004.08.002
  9. Lee, D.H., Kim, D.K., Lee, K.H. (2008) Dynamic Analysis Technique for Earthquake, Explosion and Fatigue Loadings, Special Article, J. Korea Concr. Inst., 20(4), pp.36-44.
  10. Lee, K.K., Kim, T.J., Kim, E.S., Kim, J.K. (2007) Behavior of Steel Columns subjected to Blast Loads, J. Archit. Ins. Korea, 23(7), pp.37-44.
  11. UKOOA (2003) Fire and Explosion Guidance Part 1: Avoidance and Mitigation of Explosions, Issue 1. UK Offshore Operators Association, London.

Cited by

  1. Method for Determination of Maximum Allowable Pressure of Pressure Vessel Considering Detonation vol.31, pp.5, 2018, https://doi.org/10.7734/COSEIK.2018.31.5.235