DOI QR코드

DOI QR Code

Arrangement of Connections and Piers and Earthquake Resistant Capacity of Typical Bridges

연결부분 및 교각의 배열과 일반교량의 내진성능

  • Kook, Seung-Kyu (Department of Civil Engineering, Pukyong National University)
  • 국승규 (부경대학교 토목공학과)
  • Received : 2015.01.19
  • Accepted : 2015.02.16
  • Published : 2015.04.30

Abstract

Bridges are designed and constructed as infrastructures in order to overcome topographical obstructions for fast and smooth transfer of human/material resources. Therefore the shape and size of piers constructed along the longitudinal bridge axis should be restricted by topographical conditions. Action forces of connections and piers are affected by pier shapes and sizes together with connection arrangement which decides load carrying path under earthquakes. In this study a typical bridge is modelled with steel bearings and reinforced concrete piers and seismic analyses are performed with analysis models with different arrangement of steel bearings and piers. From analysis results ductile failure mechanisms for all analysis models are checked based on strength/action force ratios of steel bearings and pier columns. In this way the influences of arrangement of connections and piers on the earthquake resistant capacity of typical bridges are figured out in view of forming ductile failure mechanism.

사회기반시설물인 교량은 인적/물적 자원의 신속하고 원활한 이동을 위해 지장물을 극복하도록 설계/시공되는 구조물이다. 그러므로 교량의 교축방향으로 배열되는 교각의 형상과 규모는 지형의 제약을 받을 수밖에 없다. 이러한 교각의 형상과 규모는 지진하중의 전달경로를 결정하는 연결부분 배열과 함께 연결부분과 교각에 발생하는 작용력을 좌우하게 된다. 이 연구에서는 강재받침과 철근콘크리트 기둥을 연결부분과 교각으로 하는 일반교량을 대상으로 교각 및 강재받침 배열이 다른 해석모델을 설정하여 지진해석을 수행하였다. 해석결과로 구한 교각기둥과 강재받침의 강도/작용력 비로부터 각 해석모델의 연성파괴메카니즘을 구성하고 연결부분 및 교각 배열이 일반교량의 내진성능에 미치는 영향을 연성파괴메카니즘 구성 측면에서 제시하였다.

Keywords

References

  1. AASHTO (2004) AASHTO LRFD Bridge Design Specifications, SI Units Third Edition.
  2. Kook, S.K. (2012) Serviceability Limit State and Response Modification Factors, J. Comput. Struct. Eng. Inst. Korea, 25(2), pp.149-154. https://doi.org/10.7734/COSEIK.2012.25.2.149
  3. Kook, S.K. (2014) No Collapse Design for Typical Bridges, J. Comput. Struct. Eng. Inst. Korea, 27(3), pp.163-172. https://doi.org/10.7734/COSEIK.2014.27.3.163
  4. Lee, J.H., Ko, S.H., Choi, J.H. (2005) Re-evaluated Overstrength Factor for Capacity Design of Reinforced Concrete Bridge Column, Earthquake Engineering Research Center, 2004 Annual Report.
  5. Lee, S.J. (1999) RC Ghost - PM Diagram.
  6. Midas IT (2004) Midas/Civil User Manual, Ver. 6.3.0 (Release no. 1), Midas IT Co. Ltd..
  7. Ministry of Land, Transport & Maritime Affairs (2010) Roadway Bridge Design Code, Ch.6: Earthquake Resistant Design pp.6-1-6-41, Appendix I1-I8.