DOI QR코드

DOI QR Code

Buckling Behaviors of Single-Layered Lattice Dome under Radial Uniform Loads

등분포 중심축 하중을 받는 단층래티스돔의 좌굴거동

  • Received : 2014.10.08
  • Accepted : 2014.10.16
  • Published : 2015.02.28

Abstract

This paper presented the nonlinear behaviors of the single-layered lattice dome, which is widely used for the long-span structure system. The behaviors were analysed through the classical shell buckling theory as the single-layered lattice dome behaves like continum thin shell due to its geometric characteristics, and finite element analysis method using the software program Nastran. Shell buckling theory provides two types of buckling loads, the global- and member buckling, and finite element analysis provides the ultimate load of geometric nonlinear analysis as well as the buckling load of Eigen value solution. Two types of models for the lattice dome were analysed, that is rigid- and pin-jointed structure. Buckling load using the shell buckling theory for each type of lattice dome, governed by the minimum value of global buckling or member buckling load, resulted better estimation than the buckling load with Eigen value analysis. And it is useful to predict the buckling pattern, that is global buckling or member buckling.

본 논문에서는 대공간구조에 폭넓게 사용되는 단층 래티스돔의 비선형거동에 관한 비교 연구를 수행하였다. 단층 래티스돔은 특성상 두께가 얇은 쉘구조의 거동과 유사하므로 전통적인 쉘좌굴 이론을 적용하여 내력을 산출할 수 있으며 또한 이 결과를 유한요소해석 프로그램을 이용한 수치해석의 결과와 비교, 분석하였다. 쉘좌굴 이론을 이용하여서는 래티스 돔의 전체좌굴하중과 부재좌굴하중을 산정하였으며, 유한요소해석법을 이용하여서는 고유치 해석에 의한 좌굴하중과 기하학적 비선형 해석에 의한 극한하중을 각각 산정하였다. 래티스돔의 절점은 강절점 및 핀절점으로 각각 모델링하였다. 쉘좌굴이론에 의한 좌굴내력은 전체좌굴하중과 부재좌굴하중의 작은 값으로 결정되며 이 값은 유한요소해석을 이용한 고유치 해석보다는 비선형 해석에 의한 극한하중에 보다 근사한 값을 제공하였으며 또한 좌굴하중의 형식을 예측하는데에 유용하게 활용되었다.

Keywords

References

  1. Han, S.E. (1996) A Study on the Analytical Technique of Stability and Buckling Characteristics of the Single Layer Latticed Domes, J. Comput. Struct. Eng., 9(3), pp.209-216.
  2. Han, S.E., Kwon, H.J., Kim, J.B. (2003) The Elasto-Plastic Buckling Analysis of Ball-Jointed Single Layer Latticed Domes Considering the Characteristics of a Connector, KASS J., 3(2), pp.91-99.
  3. Han, S.E., Lee, S.J., Lee, K.S. (2007) A Study on the Post-Buckling Analysis of Spatial Structures, AIK J., 23(7), pp.53-60.
  4. Han, S.E., Yang, J.G., Lee, S.J., Lee, J.H. (2006) A Study on the Buckling Load Formulae for the Single Layer Latticed Dome, KASS J., 6(1), pp.75-82.
  5. Kato, S., Fujimoto, M., Ogawa, T. (2005) Buckling Load of Steel Single-Layer Reticulated Domes of Circular Plan, IASS J., 46(1), pp.41-63.
  6. Kato, S., Kim, J.M., Cheong, M.C. (2003) A New Proportioning Method for Member Sections of Single-layer Reticulated Domes Subjected to Uniform and Non-uniform Loads, Eng. Struct., 25, pp.1265-1278. https://doi.org/10.1016/S0141-0296(03)00077-4
  7. Kollar and Dulacska (1984) Buckling of shells for engineers, John Wiley & Sons, p.303
  8. McGuire, W., Gallagher, R.H., Ziemian, R.D. (2000) Matrix Structural Analysis, John Wiley & Sons, p.460.
  9. Murakami, M., Heiki, K. (1991) On the Analysis of Elastic Buckling of Single-layer Latticed Domes with Regular Hexagonal Plan under Gravity load, Proc. of IASS 1991 Symposium, Copenhagen, 3, pp.101-108.
  10. Nx-Nastran (2005) Users Guide. Version 9.0, UGS Corporation
  11. Ogawa, T., Kato, S., Fujimoto, M. (2008) Buckling Load of Elliptic and Hyperbolic Paraboloidal Steel Single-layer Reticulated Shells of Rectangular Plan, IASS J., pp.21-36.
  12. Yoon, H.H., Han, S.E. (2000) A Study on the Algorithm for the Analysis of Multiple Bifurcation of Latticed Domes, AIK J., 16(9), pp.3-9.