DOI QR코드

DOI QR Code

Dynamic Characteristics Recovery of Delaminated Composite Structure

층간 분리가 있는 복합재 구조물의 동적특성 회복

  • Sohn, Jung Woo (Department of Mechanical Design Engineering, Kumoh Nat. Inst. Tech.) ;
  • Kim, Heung Soo (Department of Mechanical, Robotics and Energy Engineering, Dongguk Univ.)
  • 손정우 (금오공과대학교 기계설계공학과) ;
  • 김흥수 (동국대학교 기계로봇에너지공학과)
  • Received : 2014.09.25
  • Accepted : 2014.11.07
  • Published : 2015.02.28

Abstract

In this paper, feasibility of dynamic characteristics recovery of delaminated composite structure is numerically studied by using active control algorithm and piezoelectric actuator. Macro-fiber composite(MFC), which has great flexibility and high actuating force, is considered as an actuator in this work. After construction of finite element model for delaminated composite structure based on improved layerwise theory, modal characteristics are investigated and changes of natural frequencies and mode shapes, caused by delamination, are observed. Then, active control algorithm is realized and implemented to system model and control performances are numerically evaluated. Dynamic characteristics of delaminated composite structure are effectively recovered to those of healthy composite structure.

본 논문에서는 복합재 구조물에 손상이 있을 경우, 손상에 의해 변화된 구조물의 동적특성을 손상이 없는 상태로 회복하여, 전체 시스템의 안정성을 유지할 수 있도록 하였다. 층간 분리가 있는 구조물의 유한요소모델 구축을 위하여 향상된 층간 변위장 모델을 적용하였으며, 유한요소해석을 진행하여 구조물의 고유 진동수와 모드 형상을 관찰하였다. 능동제어 알고리즘과 압전 작동기를 적용하여 구조물의 진동 응답특성을 확인하였으며, 이를 바탕으로 손상된 구조물의 동적특성을 손상이 없는 상태로 회복할 수 있음을 확인하였다.

Keywords

References

  1. Campanelli, R.W., Engblom, J.J. (1995) The Effect of Delaminations in Graphite/PEEK Composite Plates on Modal Dynamic Characteristics, Compos. Struct., 31, pp.195-202. https://doi.org/10.1016/0263-8223(95)00009-7
  2. Cho, M., Kim, J.S. (2001) Higher-order Zig-zag Theory for Laminated Composites with Multiple Delaminations, J. Appl. Mech.-Trans. ASME. 68, pp.869-877. https://doi.org/10.1115/1.1406959
  3. Kim, H.S., Chattopadhyay, A., Choshal, A. (2003) Dynamic Analysis of Composite Laminates with Multiple Delamination using Improved Layerwise Theory, AIAA J., 41, pp.1771-1779. https://doi.org/10.2514/2.7295
  4. Kim, H.S., Kim, J., Choi, S.B. (2005) Study on Dynamic Characteristics of Delaminated Smart Composite Laminates, Trans. Korean Soc. Noise & Vib. Eng.. 15, pp.395-403. https://doi.org/10.5050/KSNVN.2005.15.4.395
  5. Kim, J., Cho, M. (2006) An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory, J. Comput. Struct. Eng. Inst. Korea, 19, pp.407-418.
  6. Kim, J., Han, J., Cho, M. (2011) On the Modification of a Classical Higher-order Shear Deformation Theory to Improve the Stress Prediction of Laminated Composite Plates, J. Comput. Struct. Eng. Inst. Korea, 24, pp.407-418.
  7. Lee, J. (2000) Free Vibration Analysis of Delaminated Composite Beams, Comput. & Struct.. 74, pp.21-129. https://doi.org/10.1016/S0045-7949(98)00317-4
  8. Pingkarawat, K., Wang C.H., Varley, R.J. (2012) Self-healing of Delamination Fatigue Cracks in Carbon Fiber-Epoxy Laminate using Mendable Thermoplastic, J. Mater. Sci., 47, pp.4449-4456. https://doi.org/10.1007/s10853-012-6303-8
  9. Pingkarawat, K., Wang C.H., Varley, R.J. (2012) Self-healing of Delamination Cracks in Mendable Expocy Matrix Laminates using Poly[ethylene-comethacrylic acid] Thermoplastic, Compos. Part A. Appl. Sci. & Manuf., 43, pp.1301-1307. https://doi.org/10.1016/j.compositesa.2012.03.010
  10. Radu, A.G., Chattopadhyay, A. (2002) Dynamic Stability Analysis of Composite Plates Including Delaminations using a Higher Order Theory and Transformation Matrix Approach, Int. J. Solids & Struct., 39, pp.1949-1965. https://doi.org/10.1016/S0020-7683(01)00168-8
  11. Saravanos, D.A., Hopkins D.A. (1996) Effects of Delaminations on the Damped Dynamic Characteristics of Composite Laminates: Analysis and Experiments, J. Sound & Vib., 192, pp.977-993. https://doi.org/10.1006/jsvi.1996.0229
  12. Sohn, J.W., Kim, H.S. (2013) Dynamic Characteristics Modification of Damaged Composite Structure Using MFC and Active Control Algorithm, Trans. Korean Soc. Noise & Vib. Eng., 23, pp.1066-1072. https://doi.org/10.5050/KSNVE.2013.23.12.1066
  13. Swann, C., Chattopadhyay, A. (2006) Optimization of Piezoelectric Sensor Location for Delamination Detection in Composite Laminates, Eng. Optim., 38, pp.511-528. https://doi.org/10.1080/03052150600557841