DOI QR코드

DOI QR Code

A Parametric Study of Deflection Analysis of the Prestressed Beams using Finite Element Analysis

유한요소해석을 이용한 프리스트레스트 보의 처짐에 대한 변수 해석

  • Park, Ha Eun (Department of Architecture Engineering, KyungHee Univ.) ;
  • Choi, Jin Woong (Department of Architecture Engineering, KyungHee Univ.) ;
  • Kim, Min Sook (Department of Architecture Engineering, KyungHee Univ.) ;
  • Lee, Young Hak (Department of Architecture Engineering, KyungHee Univ.)
  • Received : 2014.08.13
  • Accepted : 2014.09.26
  • Published : 2015.02.28

Abstract

The purpose of this study is to analyze the deflection of the prestressed beams. In this paper, a finite element model for deflections of prestressed beams is presented. Proposed finite element model was verified comparing with existing experimental results, and it showed a good agreement with the experimental results. Also, a parametric study has been conducted to analyze the influence of eccentricity, span-depth ratio, and prestressing force. The finite element model results were compared with hand calculation results. Deflections were increased as the eccentricity decreases, the span-depth ratio increases, and the prestressing force decreases. Hand calculation overestimated the deflection when the eccectricity or prestressing force is too small.

본 연구에서는 프리스트레스트 콘크리트 보의 처짐 예측을 위해 재료비선형이 고려된 콘크리트 및 철근, 강연선의 거동을 고려할 수 있는 구성모델을 조합하여 적층 쉘 요소를 사용한 유한요소해석 모델에 적용하였다. 이를 기존 연구자들의 실험 결과와 비교함으로써 모델의 타당성을 검증하였고, 스팬-깊이비, 편심 그리고 프리스트레싱 크기에 대한 처짐을 해석하고 이를 수계산 결과와 비교하였다. 그 결과, 스팬-깊이비가 커질수록, 편심이 작아질수록, 프리스트레싱 크기가 작아질수록 처짐이 증가하는 것을 확인하였다. 또한, 편심이 매우 작을 경우와 프리스트레싱 크기가 매우 작을 경우에는 수계산이 처짐을 과대평가한다는 것을 확인하였다.

Keywords

References

  1. ACI Committee 318-11 (2011) Building Code Requirements for Reinforced Concrete and Commentary (ACI 318-11), American Concrete Institute, Farmington Hills, p.503.
  2. Chao, S.H., Naaman, A.E. (2006) Simplified Calculation of Short-Term Deflection in Prestressed Two-Way Flat Slabs, ACI Struct. J., 103(6), pp.226-233.
  3. Collins, M.P., Parasz, A. (1989) Shear Strength for High Strength Concrete, Bulletin D' Information Design Aspects of High Strength Concrete, CEB 193, pp.75-83.
  4. Izumo, J., Shin, H., Maekawa, K., Okamura, H. (1992) An Analytical Model for RC Pannel Subjected to In-Plane Stress Concrete Shear in Earthquake, Elsevier Applied Science, London and New York, pp.206-215.
  5. Kim, M.S., Lee, Y.H., Kim, H.C. (2010) Analytical Study on Punching Shear of Reinforced Concrete Flat Plates, J. Comput. Struct. Eng. Inst. Korea, 23(4), pp.409-416.
  6. Padmarajaiah, S.K., Ramaswamy, A. (2004) Flexural Strength Prediction of Steel Fiber Reinforced High-Strength Concrete in Fully/Partially Prestressed Beam Specimens, Cem. & Concr. Compos., 26(4), pp.275-290. https://doi.org/10.1016/S0958-9465(02)00121-X
  7. PCI Industry Handbook Committee (1999) PCI design handbook Precast and Prestressed Concrete Fifth Edition, Precast/Prestressed Concrete Institute, U.S.A., p.632.
  8. Rao, S.V.K.M., Dilger, W.H. (1992) Evaluation of Short-Term Deflections of Partially Prestressed Concrete Members, ACI Struct. J., 89(1), pp.71-78
  9. Thorenfeldt, E.I., Tomaszewicz, A., Jensen, J.J. (1987) Mechanical Properties of High Strength Concrete and Application in Design, Proceedings of the Symposium Utilization of High Strength Concrete, Stavanger, Norway.
  10. Yang, K.H., Moon, J.H., Byun, H.Y. (2011) Effect of Partial Prestressing Ratio and Effective Prestress on the Flexural Behavior of Prestressed Lightweight Concrete Beams, J. Korea Concr. Inst., 23(1), pp.39-48. https://doi.org/10.4334/JKCI.2011.23.1.039