DOI QR코드

DOI QR Code

A Numerical Model of Reinforced Concrete Members Exposed to Fire and After-Cooling Analysis

화재 및 화재 후 냉각상태의 철근콘크리트 부재 수치해석

  • 황주영 (한국과학기술원 건설 및 환경공학과) ;
  • 곽효경 (한국과학기술원 건설 및 환경공학과)
  • Received : 2014.11.28
  • Accepted : 2014.12.10
  • Published : 2015.02.28

Abstract

This paper introduces a numerical analysis method for reinforced-concrete(RC) members exposed to fire and proposes considerations in designing RC structures on the basis of the comparison between numerical results and design codes. The proposed analysis method consists of two procedures of the transient heat transfer analysis and the non-linear structural analysis. To exactly evaluate the structural behavior under fire, two material models are considered in this paper. One is "Under-Fire" condition for the material properties at the high temperature and the other one is "After-Cooling" condition for the material properties after cooling down to air temperature. The proposed method is validated through the correlation study between experimental data and numerical results. In advance, the obtained results show that the material properties which are fittable to the corresponding temperature must be taken into account for an accurate prediction of the ultimate resisting capacity of RC members. Finally, comparison of the numerical results with the design code of EN1992-1-2 also shows that the design code needs to be revised to reserve the safety of the fire-damaged structural member.

이 논문은 화재에 노출된 철근콘크리트 구조에 대한 수치해석 모델을 제시하고, 기존의 자료 및 설계 규준과의 비교를 통해 구조물의 설계 시 고려 사항에 대해 제안하고 있다. 수치해석은 비정상 열전달 해석과 비선형 구조해석의 두 단계로 수행되며, 비정상 열전달 해석을 통해서 얻어진 화재시간에 따른 단면 온도분포를 바탕으로 비선형 구조해석하여 부재의 상태에 대한 정보를 얻게 된다. 이때, 철근콘크리트의 재료모델을 화재진행상태(Under-Fire)와 화재종료 후 냉각상태(After-Cooling)로 나뉘어 해석수행하여 각각의 재료상태에 따른 거동의 변화를 살펴본다. 해석된 결과는 여러 구조물에 대해 기존의 실험결과와 비교하여 검증하고, 설계 규준과의 비교를 통해 화재 시 구조물의 안전성에 대해 고찰하였다.

Keywords

References

  1. Abramowicz, M., Kowalski, R. (2007) Residual Mechanical Material Properties for The Reassessment of Reinforced Concrete Structures After Fire, The 9th International Conference of Modern Building Materials, Structures, and Techniques, pp.16-18.
  2. Anderberg.Y., Thelandersson.S. (1976) Stress and Deformation Characteristics of Concrete, 2-Experimental Investigation and Material Behavior Model, Bulletin 54, University of Lund, Sweden, p.83.
  3. ASTM Designation: E119 (1976) Standard Methods of Fire Tests of Building Construction and Materials, American Society for Testing and Materials, Philadelphia.
  4. Bratina, S., Saje, M., Planinc, I. (2008) The Effect of Different Strain Contributions on The Response of RC Beams in Fire, Eng. Struct., 29(3), pp.418-430. https://doi.org/10.1016/j.engstruct.2006.05.008
  5. Chang, Y.F., Chen, Y.H., Sheu, M.S., Yao, G.C. (2006) Residual Stress-Strain Relationship for Concrete Exposure to High Temperatures, Cement & Concr. Res., 36(10), pp.1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029
  6. EN1992-1-2. (2004) EUROCODE2: Design of Concrete Structures Part 1.2: General rules-Structural Fire, CEN, Brussels.
  7. Harmathy, T. Z. (1967) A Comprehensive Creep Model, J. Basic Eng., 89(D-3), pp.496-502. https://doi.org/10.1115/1.3609648
  8. Huang, Z., Burgess, Ian W, Plank, Roger J. (2009) Three-Dimensional Analysis of Reinforced concrete Beam-Column Structures in Fire, J. Struct. Eng., 135(10), pp.1201-1212. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:10(1201)
  9. Hwang, J.W, Ha, S.H., Lee, Y.H., Kim, H.J., Kwak, H.K. (2013) A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members, J. Korea Concr. Inst., 25(5), pp.497-508. https://doi.org/10.4334/JKCI.2013.25.5.497
  10. ISO 834 (1975) Fire Resistance Test-Elements of Building Construction, International Organization for Standardization, Switzerland.
  11. Kim, G.Y., Kang, Y.W., Lee, T.G., Choe, G.C., Yoon, M.H. (2012) An Experimental Study on the Mechanical Properties of Concrete with High Temperatures and Cooling Conditions, J. Korea Inst. Build. Const., 12(3), pp.323-331. https://doi.org/10.5345/JKIBC.2012.12.3.323
  12. Kodur, V.K.R, Raut, N. (2012) A Simplified Approach for Predicting Fire Resistance of Reinforced Concrete Columns under Biaxial Bending, Eng. Struct., 41, pp.428-443. https://doi.org/10.1016/j.engstruct.2012.03.054
  13. Kwak, H.G., Kim, J.K. (2011) Analytical Model for Long-Term Behavior of Slender RC Columns, The KSCE J. Civil Eng., 22(2A), pp.365-377.
  14. Kwak, H.G., Kwak, J.H. (2010) An Improved Design Formula for a Biaxially Loaded Slender RC Column, Eng. Struct., 32(1).
  15. Kwak, H.G., Kwon, S.H., Ha, S.H. (2011) Temperature Distribution and It's Contribution to Selfequilibrium Thermal Stress in Bridge, J. Comput. Struct. Eng. Inst. Korea, 24(5), pp.531-542.
  16. Lin, T.D., Gustaferro, A.H., Abrams, M.S. (1981) Fire Endurance of Continuous Reinforced Concrete Beams (RD072.01B), Portland Cement Association.
  17. Nassif, Ayman (2006) Postfire Full Stress-Strain Response of Fire-Damaged Concrete, Fire & Mater., 30(5), pp.323-332. https://doi.org/10.1002/fam.911
  18. Outinen, J., Makelainen, P. (2007) Mechanical Properties of Structural Steels at High Temperatures and After Cooling Down, Helsinki University of Technology.
  19. Sadaoui, A., Khennane, A. (2009) Effect of Transient Creep on the behavior of Reinforced Concrete Columns in Fire, Eng. Struct., 31(9), pp.2203-2208. https://doi.org/10.1016/j.engstruct.2009.04.005
  20. Terro, M.J. (1998) Numerical Modeling of the Behavior of Concrete Structures in Fire, ACI Struct. J., 95(2), pp.183-193.
  21. Yang, H., Han, L., Wang, Y. (2008) Effects of Heating and Loading Histories on Post-Fire Cooling behavior of Concrete-Filled Steel Tubular Columns, J. Constr. Steel Res., 64, pp.556-570. https://doi.org/10.1016/j.jcsr.2007.09.007
  22. Youssef, M.A., Moftah, M. (2007) General Stress-Strain Relationship for Concrete at Elevated Temperatures, Eng. Struct., 29(10), pp.2618-2634. https://doi.org/10.1016/j.engstruct.2007.01.002