DOI QR코드

DOI QR Code

Characterization of Microemulsion of Crude Oil Using Alkali-Surfactant Solution

알칼리-계면활성제 용액을 이용한 인도네시아 A원유의 마이크로에멀전 특성

  • Lee, Sang Heon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Sang Kyum (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Bae, Wisup (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Rhee, Young Woo (Graduate School of Energy Science and Technology, Chungnam National University)
  • 이상헌 (충남대학교 바이오응용화학과) ;
  • 김상겸 (충남대학교 에너지과학기술대학원) ;
  • 배위섭 (세종대학교 에너지자원공학과) ;
  • 이영우 (충남대학교 에너지과학기술대학원)
  • Received : 2014.12.31
  • Accepted : 2015.04.01
  • Published : 2015.06.10

Abstract

For the enhanced oil recovery, one of the most important factors is to determine the surfactant formulation in chemical flood. The objective of this study is to analyze the microemulsion formed between the alkali-surfactant (AS) solution and A crude oil for screening surfactants. The alkali-surfactant solution was manufactured by using the surfactant purchased from AK ChemTech. $C_{16}-PO_7-SO_4$ and sodium carbonate solution were used as surfactant and alkaline, respectively. Both TEGBE and IBA were used as a co-solvent. The AS solution and A crude oil can form a Type III middle phase microemulsion at the salinity from 0.0 wt%~3.6 wt%. Increasing the salinity causes the phase transition of microemulsion from the lower (Type I) to middle (Type III) to upper (Type II) phase. Interfacial tension (IFT) values calculated by Huh's equation were in good agreement with ultralow IFT. According to this characteristic, the surfactant purchased from a domestic company can be applied to the enhanced oil recovery.

원유회수증진 중 하나인 화학적 공법은 원유의 특성에 맞는 화학물질들의 종류와 비율에 따라 회수되는 오일의 양이 다르기 때문에 오일 특성에 맞는 알칼리-계면활성제 용액을 제조하는 것이 중요하다. 본 연구 알칼리-계면활성제 용액과 인도네시아 A중질유와의 염도 측정 실험을 통해 마이크로에멀젼의 상 거동을 분석하여 인도네시아 A중질유와 적합한 알칼리-계면활성제 용액을 제조 및 적합한 비율을 선별하였다. 알칼리-계면활성제에 사용되는 계면활성제는 AK켐텍에서 제조된 $C_{16}-PO_7-SO_4$ 계면활성제를 사용하였고, 알칼리 물질과 조용매는 탄산나트륨, IBA 그리고 TEGBE를 사용하였다. 알칼리-계면활성제 용액과 인도네시아 A중질유를 혼합했을 때, 0.0~3.6 wt%의 염도에서 Type III의 마이크로에멀젼이 형성되었으며, 염도가 증가할 때 마이크로에멀젼은 물층(Type I)에서 중간층(Type III)에서 오일층(Type II)으로 이동하는 것을 확인할 수 있었다. 또한 Huh 방정식을 통해 A중질유와 알칼리-계면활성제 용액의 계면장력을 계산한 결과 원유회수증진을 위해 적용 가능한 계면장력 값을 갖는 것을 확인할 수 있었다. 이러한 특성들을 통해 국내산 알칼리-계면활성제를 이용한 화학적 공법의 적용 가능성을 확인하였다.

Keywords

References

  1. J. G. Southwick, Y. Svec, G. Chilek, and G. T. Shahin, The effect of live crude on alkaline-surfactant-polymer formulations: implications for final formulation design, SPE J., 17, 352-361 (2012). https://doi.org/10.2118/135357-PA
  2. R. Kumar and K. K. Mohanty, ASP flooding of viscous oils, SPE Annual Technical Conference and Exhibition, September 19-22, Florence, Italy (2010).
  3. A. K. Flaaten, Q. P. Nguyen, J. Zhang, and H. Mohammadi, Alkaline/surfactant/polymer chemical flooding without the need for soft water, SPE J., 15, 184-196 (2010). https://doi.org/10.2118/116754-PA
  4. K. A. Elraies, I. M. Tan, M. Awang, and M. T. Fathaddin, A new approach to low-cost, high performance chemical flooding system, SPE Production and Operations Conference and Exhibition, June 8-10, Tunis, Tunisia (2010).
  5. A. Hussain, P. F. Luchham, and T. F. Tadros, Phase behavior of pH dependent microemulsions at high temperatures and high salinities, Oil Gas Sci. Technol., 52, 228-231 (1997). https://doi.org/10.2516/ogst:1997024
  6. R. N. Healy, R. L. Reed, in: D. O. Shah, and R. S. Schechter (eds.). Improved Oil Recovery by Surfactants and Polymer Flooding, 383-437, Academic Press, New York, USA (1977).
  7. M. Bourrel, J. L. Salager, R. S. Schechter, and W. H. Wade, A correlation for phase behavior of nonionic surfactants, J. Colloid Interface Sci., 75, 451-461 (1980). https://doi.org/10.1016/0021-9797(80)90470-1
  8. J. H. Burk, Comparison of sodium carbonate, sodium hydroxide, and sodium orthosilicate for EOR, SPE J., 2, 9-16 (1987).
  9. K. H. Cheng, Chemical consumption during alkaline flooding: a comparative evaluation, SPE Enhanced Oil Recovery Symposium, April 20-23, Tulsa, Oklahoma, USA (1986).
  10. Q. Liu and M. Dong, Surfactant enhanced alkaline flooding for western canadian heavy oil recovery, Colloid Surf. A, 293, 63-71 (2007). https://doi.org/10.1016/j.colsurfa.2006.07.013
  11. R. N. Healy, R. L. Reed, and C. W. Carpenter, A laboratory study of microemulsion flooding, Soc. Pet. Eng. J., 15, 87-100 (1975). https://doi.org/10.2118/4752-PA
  12. W. Xu, S. C. Ayirala, and D. N. Rao, Measurement of surfactant-induced interfacial interactions at reservoir conditions, SPE Annual Technical Conference and Exhibition, October 9-12, Dallas, Texas (2005).
  13. Z. Lu, L. Lan, Z. Sui, and J. Y. Yu, Effect of acidic components on the dynamic interfacial tensions in surfactant/alkali/acidic crude oil systems, J. Disper. Sci. Technol., 22, 41-55 (2001). https://doi.org/10.1081/DIS-100102679
  14. E. Hoff, B. Nystrom, and B. Lindman, Polymer-surfactant interactions in dilute mixtures of a nonionic cellulose derivative and an anionic surfactant, Langmuir, 17, 28-34 (2001). https://doi.org/10.1021/la001175p
  15. Y. Zhu, Y. Zhang, and J. Niu, The research progress in the alkali-free surfactant-polymer combination flooding technique, Pet. Exp. Dev., 39, 346-351 (2012).
  16. X. Cao, J. Zhang, and A. Zhang, Development and application of dilute surfactant-polymer flooding system for Shengli oilfield, J. Pet. Sci. Tech., 65, 45-50 (2009).
  17. V. Sahni, R. M. Dean, C. Britton, and D. H. Kim, The role of co-solvents and co-surfactants in making chemical floods robust, SPE Improved Oil Recovery Symposium, April 24-28, Tulsa, Oklahoma, USA (2010).
  18. S. Li, Y. Zhu, and Y. Zhao, Evaluation of pilot results of alkali-surfactant-polymer flooding in Daqing Oilfield, Acta Pet. Sin., 26, 56-59 (2005). https://doi.org/10.1111/j.1745-7254.2005.00019.x
  19. P. A. Windor, Solvent Properties of Amphiphilic Compounds, 1st ed., Butterworth, London, UK (1954).
  20. B. M. Knickerbocker, Pattern of three-liquid phase behavior illustrated by alcohol-hydrocarbon-water-salt mixtures, J. Phys. Chem., 86, 393-400 (1982). https://doi.org/10.1021/j100392a022
  21. C. Holmberg, S. Nilsson, S. K. Singh, and L. O. Sundelof, Hydrodynamic and thermodynamic aspects of the SDS-EHEC-water system, J. Phys. Chem., 96, 871-880 (1992). https://doi.org/10.1021/j100181a064
  22. Y. Touhami, D. Rana, V. Hornof, and G. H. Neale, Effects of added surfactant on the dynamic interfacial tension behavior of acidic oil/alkaline systems, J. Coll. Int. Sci., 239, 226-229 (2001). https://doi.org/10.1006/jcis.2001.7547
  23. C. Huh, Interfacial tensions and solubilizing ability of a microemulsion phase that coexists with oil and brine, J. Coll. Int. Sci., 71, 408-426 (1979). https://doi.org/10.1016/0021-9797(79)90249-2
  24. D. Levitt, A. Jackson, C. Heinson, L. N. Britton, T. Malik, V. Dwarakanath, and G. A. Pope, Identification and evaluation of high-performance EOR surfactants, SPE J., 12, 243-253 (2009).
  25. G. A. Pope, B. Wang, and K. Tsaur, A sensitivity study of micellar/polymer flooding. SPE J., 19, 357-368, (1979). https://doi.org/10.2118/7079-PA
  26. R. N. Healy, R. L. Reed, and D. K. Stenmark, Multiphase microemulsion systems, SPE J., 16, 147-160 (1976). https://doi.org/10.2118/5565-PA
  27. M. Delshad, D. Bhuyan, G. A. Pope, and L. W. Lake, Effect of capillary number on the residual saturation of a three-phase micellar solution, SPE Enhanced Oil Recovery Symposium, April 20-23, Tulsa, Oklahoma, USA (1986).
  28. L. D. Zhang and G. J. Hirasaki, Favorable attributes of alkali-surfactant-polymer flooding SPE/DOE Symposium on Improved Oil Recovery, April 22-26, Tulsa, Oklahoma, USA (2006).
  29. P. M. Wilson and C. F. Brandner, Aqueous surfactant solutions which exhibit ultra-low tensions at the oil-water interface, J. Coll. Int. Sci., 60, 473-479 (1977). https://doi.org/10.1016/0021-9797(77)90311-3
  30. W. R. Foster, A low-tension water flooding process, J. Pet. Tech., 25, 205-210 (1973). https://doi.org/10.2118/3803-PA
  31. Y. Zhu, G. Jian, and Z. Wang, Development progress of surfactants for chemical combination flooding, Adv. Mater. Res., 524-527, 1673-1680 (2012). https://doi.org/10.4028/www.scientific.net/AMR.524-527.1673