DOI QR코드

DOI QR Code

Genotype Analyses of Methicillin Resistant Staphylococcus aureus Isolated from clinical specimens

임상검체로부터 분리된 Methicillin 내성 Staphylococcus aureus의 유전자형 분석

  • Kim, Jean-Soo (Dept. of Clinical Pathology, Health Institute of Technology) ;
  • Park, Chul (Dept. of Clinical Pathology, Gwangyang Health College)
  • 김진수 (대전보건대학교 임상병리과) ;
  • 박철 (광양보건대학교 임상병리과)
  • Received : 2015.02.13
  • Accepted : 2015.05.07
  • Published : 2015.05.31

Abstract

Staphylococcus aureus is the major causative organism of nasocomial infection being the important pathogen in the clinic. Appearance of staphylococcus aureus resistant to methicillin (MRSA) is becoming a big problem in clinics and dynamics all over the world acquiring antibiotic resistance with virulence factors as its feature differentiated from other pathogenic bacteria fast. This research intended to compare and analyze the correlation of antibiotics resistance between strains with toxin genes and distribution of toxin genes of MRSA 101 strains acquired from clinical specimen in one general hospital (enterotoxin(se), toxic shock syndrome toxin-1(tst), exfoliative toxin(et), Panton Valentine leukocidin(pvl)). seg gene, isolated the most among toxin genes, was detected in 59 strains (58.4%) and more than two toxin genes were detected in 70 strains (69.3%). As a combination possessing toxin genes, it was detected in 19 strains (18.8%) as seb, sec, seg, sei, tst and the second frequent combination was sec, seg, sei shown in 11 strains (10.9%). 19 strains (18.8%) with combinations of toxin genes same with seb, sec, seg, sei, tst had 100% resistance Ampicillin, Benzylpenicillin, Ciprofloxacin, Clindamycin, Gentamicin, Erythromycin, Telithromycin, Tetracycline antibiotics. Strains with many toxin genes showed high correlation of antibiotic resistance. Afterwards, effective therapy and thorough infection management should be preceded not to spread the resistance of MRSA strain.

황색포도상구균은 임상에서 중요한 병원체로 원내감염의 주 원인균이다. methicillin에 내성인 황색포도상구균(MRSA) 출현은 특히 전 세계적으로 임상과 역학의 주요 문제가 되고 있으며 다른 병원성 세균과 차별되는 특징으로 독성인자를 가지면서 항생제 내성을 빠르게 획득해 가고 있다. 본 연구는 한 종합병원 임상 검체로부터 얻어진 MRSA 101균주의 독소유전자(enterotoxin(se), toxic shock syndrome toxin-1(tst), exfoliative toxin(et), Panton Valentine leukocidin(pvl)) 보유 분포와 이들 독소 유전자 보유 균주들간의 항생제 내성과의 상관성을 비교 분석 하고자 하였다. 독소유전자중 가장 많이 분리된 seg 유전자가 59균주(58.4%)에서 검출되었으며 70균주(69.3%)에서 두개 이상의 독소 유전자가 검출되었다. 독소유전자 보유조합으로 seb, sec, seg, sei, tst가 19균주(18.8%)에서 발견되었으며 다음으로 빈번한 조합은 sec, seg, sei로 11균주(10.9%)로 나타났다. seb, sec, seg, sei, tst 동일한 독소유전자 조합을 갖고 있는 19균주(18.8%)들은 Ampicillin, Benzylpenicillin, Ciprofloxacin, Clindamycin, Gentamicin, Erythromycin, Telithromycin, Tetracycline 항생제 내성이 100% 였다. 독소유전자 보유수가 많은 균주들은 항생제 내성이 높은 상관성을 확인하였다. 향후 MRSA 균주의 내성이 확산되지 않도록 효과적인 치료와 철저한 감염관리가 선행되어야 할 것이다.

Keywords

References

  1. J. S. Kim, H. S. Kim, W. K. Song, H. C. Cho, K. M. Lee, E. C. Kim. Antimicrobial resistance profiles of Staphylococcus aureus isolated in 13 Korean hospitals. Korean J Lab Med 24:223-9, 2004. DOI: http://dx.doi.org/10.3346/jkms.2009.24.2.223
  2. Frigatto EA, Machado AM, Pignatari AC, Gales AC. Is the cefoxitin disk test reliable enough to detect oxacillin resistance in coagulase negative staphylococci? J Clin Microbiol 43:2028-9, 2005. DOI: http://dx.doi.org/10.1128/JCM.43.4.2028-2029.2005
  3. Y. Chong, K. Lee, Y. J. Park, D. S. Jeon, M. H. Lee, M. Y. Kim, C. H. Chang, E. C. Kim, N. Y. Lee, H. S. Kim, E. S. Kang, H. C. Cho, I. K. Paik, H. S. Lee, S. J. Jang, A. J. Park, Y. J. Cha, S. H. Kang, M. H. Lee, W. Song, J. H. Shin. Korean nationwide surveillance of antimicrobial resistance of bacteria in 1997. Yonsei Med J 39:569-77, 1998. DOI: http://dx.doi.org/10.3349/ymj.1998.39.6.569
  4. H. B. Kim, H. C. Jang, H. J. Nam, Y. S. Lee, B. S. Kim, W. B. Park, K. D. Lee, Y. J. Choi, S. W. Park, M. D. Oh, E. C. Kim, K. W. Choe. In vitro activities of 28 antimicrobial agents against Staphylococcus aureus isolates from tertiary-care hospitals in Korea: a nationwide survey. Antimicrob Agents Chemother 48:1124-7, 2004. DOI: http://dx.doi.org/10.1128/AAC.48.4.1124-1127.2004
  5. H. Lee, D. Yong, K. Lee, S. G. Hong, E. C. Kim, S. H. Jeong, Y. J. Park, T. Y. Choi, Y. Uh, J. H. Shin, W. K. Lee, J. Lee, J. Y. Ahn, S. H. Lee, G. J. Woo. Antimicrobial resistance of clinically important bacteria isolated from 12 hospitals in Korea in 2004. Korean J Clin Microbiol 8:66-73, 2005.
  6. H. Lee, C. K. Kim, J. Lee, S. H. Lee, J. Y. Ahn, S. G. Hong, Y. J. Park, S. H. Jeong, E. C. Kim, W. K. Lee, Y. Uh, J. H. Shin, T. Y. Choi, H. S. Kwak, K. Lee. Antimicrobial resistance of clinically important bacteria isolated from 12 hospitals in Korea in 2005 and 2006. Korean J Clin Microbiol 10:59-69, 2007.
  7. Korea Centers for Disease Prevention and Control. Korean Antimicrobial Resistance Monitoring System 2010 Annual report. 12-21, 2010.
  8. Sina H, Ahoyo TA, Moussaoui W, et al. Variability of antibiotic susceptibility and toxin production of Staphylococcus aureus strains isolated from skin, soft tissue, and bone related infections. BMC Microbiology 13(1):188, 2013. DOI: http://dx.doi.org/10.1186/1471-2180-13-188
  9. H. B. Kim. Community associated methicillin resistant Staphylococcus aureus (CA-MRSA). Korean J Intern Med. 72:120-130, 2007.
  10. Sabouni F, Mahmoudi S, Bahador A, Pourakbari B, Sadeghi RH, Ashtiani MT, Nikmanesh B, Mamishi S. Virulence Factors of Staphylococcus aureus Isolates in an Iranian Referral Children's Hospital. Osong Public Health Res Perspect. 2:96-100, 2014. DOI: http://dx.doi.org/10.1016/j.phrp.2014.03.002
  11. H. J. Huh, E. S. Kim, S. L. Chae. Evaluation of the BD GeneOhn MRSA Real-time PCR Assay for Detection of Nasal Colonization by MRSA. Korean J Clin Microbiol. 2:74-78, 2011. DOI: http://dx.doi.org/10.5145/KJCM.2011.14.2.74
  12. Cheesbrough M. District laboratory practice in tropical countries. Cambridge: Cambridge University Press; 2006. DOI: http://dx.doi.org/10.1017/CBO9780511543470
  13. H. N. Choe, C. Park, H. R. Kim, K. S. Baik, S. N. Kim, and C. N. Seong. Characteristics and antibiotic susceptibility of imipenem-resistant clinical isolates producing carbapenemase. J. Life Sci. 20:1214-1220, 2010. DOI: http://dx.doi.org/10.5352/JLS.2010.20.8.1214
  14. Mehrotra. M, G. Wang, and W. M. Johnson. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J. Clin. Microbiol. 38:1032-1035, 2000.
  15. Oliveira, D. C. and H. De Lencastre. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 46:2155-2161, 2002. DOI: http://dx.doi.org/10.1128/AAC.46.7.2155-2161.2002
  16. Monday, S. R. and G. A. Bohach. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 37: 3411-3414, 1999.
  17. Lina, G., Y. Piemont, F. Godail-Gamot, M. Bes, M. O. Peter, V. Gauduchon, F. Vandenesch, and J. Etienne. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29:1128-1132, 1999. DOI: http://dx.doi.org/10.1086/313461
  18. Lovseth, A., S. Loncarevic, and K. G. Berdal. Modified multiplex PCR method for detection of pyrogenic exotoxin genes in staphylococcal isolates. J. Clin. Microbiol. 42:3869-3872, 2004. DOI: http://dx.doi.org/10.1128/JCM.42.8.3869-3872.2004
  19. C. Y. Lee, J. J. Schmidt, A. D. Johnson- Winegar, L. Spero, and J. J. Iandolo. Sequence determination and comparison of the exfoliative toxin A and toxin B genes from Staphylococcus aureus. J. Bacteriol. 169:3904-3909, 1987. https://doi.org/10.1128/jb.169.9.3904-3909.1987
  20. Jackson, M. P. and J. J. Iandolo. Sequence of the exfoliative toxin B gene of Staphylococcus aureus. J. Bacteriol. 167:726-728, 1986. https://doi.org/10.1128/jb.167.2.726-728.1986
  21. Performance standards for antimicrobial susceptibility testing. 19th Informational Supplement. CLSI document M100-S19 (ISBN 1-56238-690-5). Wayne, PA: Clinical and Laboratory Standards Institute, 2009.
  22. J. S. Kim, W. Song, H. S. Kim, H. C. Cho, K. M. Lee, M. S. Choi, and E. C. Kim. Association between the methicillin resistance of clinical isolates of Staphylococcus aureus, their staphylococcal cassette chromosome mec (SCCmec) subtype classification, and their toxin gene profiles. Diagn. Microbiol. Infect. Dis. 56:289-295, 2006. DOI: http://dx.doi.org/10.1016/j.diagmicrobio.2006.05.003
  23. H. J. Jung, J. I. Cho, E. S. Song, J. J. Kim, and K. S. Kim. PCR detection of virulence genes encoding coagulase and other toxins among clinical methicillin-resistant Staphylococcus aureus. J. Microbiol. Biotechnol. 33:207-214. 2005.
  24. Ho, G., W. H. Campbell, M. S. Bergdoll, and E. Carlson. Production of a toxic shock syndrome toxin variant by Staphylococcus aureus strains associated with sheep, goats, and cows. J. Clin. Microbiol. 27:1946-1948, 1989.
  25. J. S. Kim, H. S. Kim, W. Song, H. C. Cho, K. M. Lee, and E. C. Kim. Molecular epidemiology of methicillin-resistant Staphylococcus aureus isolates with toxic shock syndrome toxin and staphylococcal enterotoxin C genes. Korean J. Lab. Med. 27:118-123, 2007. DOI: http://dx.doi.org/10.3343/kjlm.2007.27.2.118
  26. Zschock, M., K. Risse, and J. Sommerhauser. Occurrence and clonal relatedness of sec/tst-gene positive Staphylococcus aureus isolates of quartermilk samples of cows suffering from mastitis. Lett. Appl. Microbiol. 38:493-498, 2004. DOI: http://dx.doi.org/10.1111/j.1472-765X.2004.01519.x
  27. Katsuda, K., E. Hata, H. Kobayashi, M. Kohmoto, K. Kawashima, H. Tsunemitsu, and M. Eguchi. Molecular typing of Staphylococcus aureus isolated from bovine mastitic milk on the basis of toxin genes and coagulase gene polymorphisms. Vet. Microbiol. 105:301-305, 2005. DOI: http://dx.doi.org/10.1016/j.vetmic.2004.12.004
  28. Akcam, F. Z., G. B. Tinaz, O. Kaya, A. Tigli, E. Ture, and S. Hosoglu. Evaluation of methicillin resistance by cefoxitin disk diffusion and PBP2a latex agglutination test in mecA-positive Staphylococcus aureus, and comparison of mecA with femA, femB, femX positivities. Microbiol. Res. 164:400-403. 2009. DOI: http://dx.doi.org/10.1016/j.micres.2007.02.012