DOI QR코드

DOI QR Code

Environmental Impacts Assessment of Elementary School Buildings and Establishment of the Reference Target using Life Cycle Assessment Model

전과정평가 모델을 이용한 초등학교 건축물 환경영향 평가 및 비교기준 수립

  • Ji, Changyoon (Department of Architectural Engineering, Yonsei UniversityDepartment of Architectural Engineering, Yonsei University) ;
  • Hong, Taehoon (Department of Architectural Engineering, Yonsei University) ;
  • Jeong, Jaewook (Department of Architectural Engineering, Yonsei UniversityDepartment of Architectural Engineering, Yonsei University)
  • Received : 2015.03.04
  • Accepted : 2015.03.27
  • Published : 2015.05.31

Abstract

In order to determine how much a new green building reduce the environmental impacts, it is necessary to establish the reference target for comparison. Therefore, this study aims to establish the reference target by evaluating the environmental impacts of existing buildings. To ensure this end, this study evaluated the environmental impacts(Global warming potential, ozone layer depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential) of 17 existing elementary school buildings, which are located in Seoul, Busan, Daegu, and Gwangju, by using the hybrid LCA model. As a result, the environmental impacts of the case buildings were clearly distinguished in different regions. Therefore, this study presented the reference targets which are appropriate to each region. For example, the reference targets for global warming potential, which can be used in Seoul, Busan, Daegu, and Gwangju, are 3.76E+03, 1.90E+03, 2.63E+03, $2.81E+03kg-CO_2\;eq./m^2$, respectively. The presented reference targets are expected to be useful for understanding how much environmental impacts can be reduced when a new green school building is constructed.

신축 녹색건축물의 환경영향 감축 효과를 평가하기 위해서는 비교를 위한 기존 건축물에 대한 환경영향 결과가 필요하다. 본 연구는 비교 기준을 제시하기 위하여, 많은 기존 건축물에 대한 환경영향을 사례 분석하는 것을 목적으로 한다. 이를 위하여, 산업연관표와 에너지원별 목록분석 데이터(LCI)를 기반으로 하는 LCA 모델을 이용하여 서울, 부산, 대구, 광주 지역의 17개 초등학교 건축물에 대한 환경영향(지구온난화지수, 오존층파괴지수, 산성화지수, 부영양화지수, 광화학산화지수, 자원고갈지수)을 평가하였다. 평가 결과, 초등학교 건축물의 환경영향은 연면적, 사용에너지원의 차이에 따라서는 큰 차이를 보이지 않은 반면, 지역에 따라 명확하게 구분되는 것으로 나타났다. 이에 따라, 본 연구에서는 지역에 따라 구분된 비교 기준을 제시하였다. 예를 들어, 서울, 부산, 대구, 광주 지역에서의 GWP에 대한 비교 기준은 각각 3.76E+03, 1.90E+03, 2.63E+03, $2.81E+03kg-CO_2\;eq./m^2$로 나타났다. 제시된 결과는 신축 녹색 초등학교 건축물의 환경영향 저감 효과를 파악하는데 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Bank of Korea (2007). Input-Output Analysis Explanation. Bank of Korea. South Korea.
  2. Chang Y., Ries R.J. and Lei S. (2012). "The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model." Energ. Buildings., 55, pp. 790-798. https://doi.org/10.1016/j.enbuild.2012.10.019
  3. Choi D., Chun H., and Cho K. (2013). "A Study on the LCA of an Apartment House through a Simplified Technique." Journal of the Architectural Institute of Korea, 29(1), pp. 307-316.
  4. Daniel, J.S., Velders, G.J.M., Douglass, A.R., Forser, P.M.D., Hauglustaine, D.A., Isaksen, I.S.A., Kuijpers, L.J.M., McCulloch, A., and Wallington, T.J. (2006). Scientific assessment of ozone depletion:2006, Chapter 8 in: Halocarbon Scenarios, Ozone Depletion Potentials, and Global Warming Potentials. Geneva, Switzerland.
  5. Energy Information Administration(EIA). (2011). Table 2. 1a Energy Consumption Estimates by Sector, 1949-2010. Accessed on 15 November 2014.
  6. Guinee J.B., Gorree, M., Heijung, R., Huppoes, G., Kleijn, R., Koning, A., Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., Bruijn, H. Duin R., and Huijbregts, M.A.J., (2001). Life cycle assessment: An operational guide to the ISO standards. Ministry of Housing, Spatial Planning and the Environment (VROM) and Centre of Environmental Science - Leiden University (CML), Netherlands.
  7. Hauschild, M., and Wenze,l H., (1998). Environmental assessment of products: scientific background volume 2. Champman & Hall, London. UK.
  8. Hong T., Ji C., Jang M., and Park H. (2014). "Assessment Model for Energy Consumption and Greenhouse Gas Emissions during the Construction Phase." J. Manage. Eng., 30(2), pp. 226-235. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000199
  9. Hong T., and Ji C. (2014). "Comparison of the CO2 Emissions of Buildings using Input-Output LCA Model and Hybrid LCA Model." Korean journal of Construction Engineering and Management, KICEM, 15(4), pp. 119-127. https://doi.org/10.6106/KJCEM.2014.15.4.119
  10. IPCC (2007). Climate change 2007: The physical science basis. IPCC 4th assessment report. Cambridge University press, Cambridge, United Kingdom and New York, USA.
  11. ISO 14040 (2006). Environmental Management-Life Cycle Assessment-Principles and Framework. International Organization for Standardization.
  12. Jang M., Hong T., and Ji C. (2014). "Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea." Environ. Impact Assess. Rev., 50, pp. 143-155.
  13. Jenkin M.E., Hayman G.D. (1999). "Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters." Atmos. Environ., 33(8), pp. 1275-1293. https://doi.org/10.1016/S1352-2310(98)00261-1
  14. Korea Environmental Industry & Technology Institute (KEITI). Korea LCI Database Information Network. South Korea; Ministry of Environment: 2004. Accessed on 15 October 2013. .
  15. Lee K. (2002). "A Study on the Application of Life Cycle Assessment for the remodeled Multifamily Housing-Focused on the Inventory Analysis of LCA-." Korean journal of Construction Engineering and Management, KICEM, 18(12), pp. 16-23.
  16. Moon H., Hyun C., and Hong T. (2014). "Prediction Model of CO2 Emission for Residential Buildings in South Korea." J. Manage. Eng., 30(3), 04014001. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000228
  17. Wang M.Q. (1999). GREET 1.5: Transportation fuel-Cycle model, volume 2: appendixes of data and results. Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, Argonne, Illinois.

Cited by

  1. A Study on Life Cycle CO2 Emissions of Low-Carbon Building in South Korea vol.8, pp.12, 2016, https://doi.org/10.3390/su8060579
  2. Analysis of the Primary Building Materials in Support of G-SEED Life Cycle Assessment in South Korea vol.10, pp.8, 2018, https://doi.org/10.3390/su10082820