DOI QR코드

DOI QR Code

Change of population density of tobacco whitefly (Bemisia tabaci, Aleyrodidae, Hemiptera) by RNAi

RNAi에 의한 담배가루이(Bemisia tabaci, 가루이과, 노린재목)의 개체군 밀도변화

  • Ko, Na-Yeon (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Youn, Young-Nam (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 고나연 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과)
  • Received : 2015.02.23
  • Accepted : 2015.03.12
  • Published : 2015.03.31

Abstract

Ninety genes randomly selected from tobacco whitefly (Bemisia tabaci) cDNA library was studied for selecting target gene in order to control of tobacco whitefly using TRV-VIGS vector (tobacco rattle virus-virus induced gene silencing vector) with RNAi. First of all, the occurrence of B. tabaci adult according to agro-infiltration of TRV was no significant difference. And that of TRV inserted tobacco whitefly cDNA showed a significant difference in each sample. P CV and N CV sample were more than 80% could be confirmed in 5 samples, for example, wh11, wh36, wh46, wh50 and wh71. Lastly, the occurrence of nymph and egg also showed a significant difference in each sample. That could be confirmed in 11 samples, for example, wh01, wh09, wh10, wh15, wh16, wh23, wh24, wh48, wh64 and wh66. In case of wh46, wh50 and wh71 sample could be confirmed that occurrence of B. tabaci adult was many, but occurrence of B. tabaci nymph and egg was a little. So sample showed a physioecological good effect to control of whitefly need to be investigated variation of gene expression in whitefly body using qRT-PCR through individual test.

Keywords

References

  1. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotech. 25:1322-1326. https://doi.org/10.1038/nbt1359
  2. Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG. 1994. Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann. Appl. Biol. 125:311-325. https://doi.org/10.1111/j.1744-7348.1994.tb04972.x
  3. Bhatia V, Bhattacharya R, Uniyal PL, Singh R, Niranjan RS. 2012. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae. PloS one, 7:e46343. https://doi.org/10.1371/journal.pone.0046343
  4. Brigneti G, Martin-Hernandez AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JD. 2004. Virus-induced gene silencing in Solanum species. Plant J. 39:264-272. https://doi.org/10.1111/j.1365-313X.2004.02122.x
  5. Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP. 2006. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 142:21-27. https://doi.org/10.1104/pp.106.084624
  6. Byrne DN. 1999. Migration and dispersal by the sweet potato whitefly, Bemisia tabaci. Agricul. For. Meteorol. 97:309-316. https://doi.org/10.1016/S0168-1923(99)00074-X
  7. Choi YM, Kim GH. 2004. Insecticidal activity of spearmint oil against Trialeurodes vaporariorum and Bemisia tabaci adults. c43(4):323-328. [in Korean]
  8. Czosnek H, Ghanim M, Ghanim M. 2002. The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci-insights from studies with tomato yellow leaf curl virus. Ann. Appl. Biol. 140:215-231. https://doi.org/10.1111/j.1744-7348.2002.tb00175.x
  9. Devine GJ, Denholm I. 1998. An unconventional use of piperonyl butoxide for managing the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Bull. Entomol. Res. 88:601-610. https://doi.org/10.1017/S0007485300054262
  10. Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR. 2007. Host-delivered RNAi: An effective strategy to silence genes in plant parasitic nematodes. Planta. 226:1525-1533. https://doi.org/10.1007/s00425-007-0588-x
  11. Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem. Physiol. 58:216-225. https://doi.org/10.1002/arch.20044
  12. Huvenne H, Smagghe G. 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. J. Insect Physiol. 56:227-235. https://doi.org/10.1016/j.jinsphys.2009.10.004
  13. Jones DR. 2003. Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109:195-219. https://doi.org/10.1023/A:1022846630513
  14. Karatolos N, Gorman K, Williamson MS, Denholm I. 2012. Mutations in the sodium channel associated with pyrethroid resistance in the greenhouse whitefly, Trialeurodes vaporariorum. Pest Manag. Sci. 68:834-838. https://doi.org/10.1002/ps.2334
  15. Kim HY, Lee YH, Kim JH, Kim YH. 2008. Comparison on the capability of four predatory mites to prey on the eggs of Bemisia tabaci (Hemiptera: Aleyrodidae). Korean J. Appl. Entomol. 47(4):429-433. [in Korean] https://doi.org/10.5656/KSAE.2008.47.4.429
  16. Lee H, Song W, Kwak HR, Kim JD, Park JG, Auh CK, Kim DH, Lee KY, Lee SC, Choi HS. 2010. Phylogenetic analysis and inflow route of tomato yellow leaf curl virus (TYLCV) and Bemisia tabaci in Kor. Mol. Cell. 30: 467-476. https://doi.org/10.1007/s10059-010-0143-7
  17. Lee YS, Lee, SY, Park EC, Kim JH, Kim GH. 2002. Comparative toxicities of pyriproxyfen and thiamethoxam against the sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). J. Asia-Paci. Entomol. 5:117-122. https://doi.org/10.1016/S1226-8615(08)60140-5
  18. Liu Y, Schiff M, Dinesh-Kumar SP. 2002. Virus-induced gene silencing in tomato. Plant J. 31:777-786. https://doi.org/10.1046/j.1365-313X.2002.01394.x
  19. Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC. 2003. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22: 5690-5699. https://doi.org/10.1093/emboj/cdg546
  20. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotech. 25:1307-1313. https://doi.org/10.1038/nbt1352
  21. Mutti NS, Park Y, Reese JC, Reeck GR. 2006. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 6:1-7.
  22. Perring TM, Cooper AD, Rodriguez RJ, Farrar CA, Bellows TS. 1993. Identification of a whitefly species by genomic and behavioral studies. Sci. 259:74-77. https://doi.org/10.1126/science.8418497
  23. Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA. 2011. Silencing of aphid genes by dsRNA feeding from plants. PloS one. 6:e25709. https://doi.org/10.1371/journal.pone.0025709
  24. Rangasamy M, Siegfried BD. 2012. Validation of RNA interference in western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Pest Manag. Sci. 68:587-591. https://doi.org/10.1002/ps.2301
  25. Sapountzis P, Duport G, Balman S, Gaget K, Jaubert-Possamai S, Febvay G, Charles H, Rahbe Y, Colella S, Calevro F. 2014. New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: Molting or gut phenotypes specifically induced by injection or feeding treatments. Insect Bioche. Mol. Biol. 51:20-32. https://doi.org/10.1016/j.ibmb.2014.05.005
  26. Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE. 2013. Towards the elements of successful insect RNAi. J. Insect Physiol. 59:1212-1221. https://doi.org/10.1016/j.jinsphys.2013.08.014
  27. Secker AE, Bedford ID, Markham PG, Williams MEC. 1998. Squash, a reliable field indicator for the presence of the B biotype of tobacco whitefly, Bemisia tabaci. In: Brighton crop protection conference-pests and Diseases. Brit. Crop Prot. Council. Farnham, UK. pp. 837-842.
  28. Shingles J, Lilley CJ, Atkinson HJ, Urwin PE. 2007. Meloidogyne incognita: molecular and biochemical characterization of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exper. Parasitol. 115:114-120. https://doi.org/10.1016/j.exppara.2006.07.008
  29. Velasquez AC, Chakravarthy S, Martin GB. 2009. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J. Vis. Exp. 28:1-4.
  30. Whyard S, Singh AD, Wong S. 2009. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 39:824-832. https://doi.org/10.1016/j.ibmb.2009.09.007
  31. Wynant N, Santos D, Van Wielendaele P, Vanden Broeck J. 2014. Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust, Schistocerca gregaria. Insect Mol. Biol. 23:320-329.
  32. Yadav BC, Veluthambi K, Subramaniam K. 2006. Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol. Biochem. Parasitol. 148:219-222 https://doi.org/10.1016/j.molbiopara.2006.03.013
  33. Yoon YJ, Yu YM, Lee MH, Han EJ, Hong SJ, Ahn NH, Kim YK, Jee HJ, Park JH. 2010. Characterization of Lecanicillium lecanii Btab0l isolated with bioactivities to tobacco whitefly (Bemisia tabaci). Korean J. Appl. Entomol. 49:417-422. [in Korean] https://doi.org/10.5656/KSAE.2010.49.4.417

Cited by

  1. Gene expression in plant according to RNAi treatment of the tobacco whitefly vol.42, pp.2, 2015, https://doi.org/10.7744/cnujas.2015.42.2.081