DOI QR코드

DOI QR Code

Ferroelectric-Paraelectric Phase Transition of CsH2PO4 studied by Static NMR and MAS NMR

  • Lim, Ae Ran (Department of Science Education, Jeonju University) ;
  • Lee, Kwang-Sei (Department of Nano Science & Engineering, Center for Nano Manufacturing, Inje University)
  • Received : 2015.03.31
  • Accepted : 2015.05.14
  • Published : 2015.06.30

Abstract

The microscopic dynamics of $CsH_2PO_4$, with two distinct hydrogen bond lengths, are studied by static nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. The proton dynamics of the two crystallographically inequivalent hydrogen sites were discussed in terms of the $^1H$ NMR and $^1H$ MAS NMR spectra. Although the hydrogen bonds have two inequivalent sites, H(1) and H(2), distinct proton dynamics for the two sites were not found. Further, the $^{133}Cs$ spectrum is more or less continuous near $T_{C1}$ (=153 K). Finally, the phase transition mechanism of $T_{C1}$ in $CsH_2PO_4$ is related to the ordering of protons.

Keywords

References

  1. H. S. Lee and M. E. Tuckerman, J. Phys. Chem. C 112, 9917 (2008) https://doi.org/10.1021/jp800342y
  2. J. Otomo, T. Ishigooka, T. Kitano, H. Takahashi, and H. Nagamoto, Electrochimica Acta 53, 8186 (2008) https://doi.org/10.1016/j.electacta.2008.06.018
  3. J. Otomo, N. Minagawa, C. Wen, K. Eguchi, and H. Takahashi, Solid State Ionics 156, 356 (2003)
  4. D. A. Boysen, S. M. Haile, H. Liu, and R. A. Secco, Chem. Mater. 15, 727 (2003) https://doi.org/10.1021/cm020138b
  5. W. Bronowska, J. Chem. Phys. 114, 611 (2001) https://doi.org/10.1063/1.1328043
  6. A. I. Baranov, V. P. Khiznichenko, V. A. Sandler, and L. A. Shuvalov, Ferroelectrics 81, 1147 (1988)
  7. A. I. Baranov, E. M. Kopnin, V. V. Grebenev, A. Sin, Yu. Dubitsky, and P. Caracino, Phys. Stat. Solidi A 206, 36 (2009) https://doi.org/10.1002/pssa.200824014
  8. S. M. Haile, C. R. I. Chisholm, K. Sasaki, D. A. Boyser, and T. Uda, Faraday Discuss 134, 17 (2007) https://doi.org/10.1039/B604311A
  9. S. Hossein, W. R. W. Daud, M. Badiei, A. A. H. Kadhum, and A. B. Mohammad, Bull. Mater. Sci. 34, 759 (2011) https://doi.org/10.1007/s12034-011-0192-3
  10. B. V. Merinov and U. Bismayer, Solid State Ionics 136, 223 (2000)
  11. R. E. Lechner, Solid State Ionics 145, 167 (2001) https://doi.org/10.1016/S0167-2738(01)00946-8
  12. B. Merinov, Solid State Ionics 213, 72 (2012) https://doi.org/10.1016/j.ssi.2011.07.012
  13. E. Ortiz, R. A. Vargas, and B.-E. Mellander, J. Chem. Phys. 110, 4847 (1999) https://doi.org/10.1063/1.478371
  14. Y. K. Taninouchi, T. Uda, Y. Awakura, A. Ikeda, and S. M. Haile, J. Mater. Chem. 17, 3182 (2007) https://doi.org/10.1039/b704558c
  15. A. I. Baranov, E. M. Kopnin, V. V. Grebenev, A. Zaopo, Yu. Dubitsky, and P. Caracino, Solid State Ionics 178, 657 (2007) https://doi.org/10.1016/j.ssi.2007.02.009
  16. Y.-K. Taninouchi, T. Uda, and Y. Awakura, Solid State Ionics 178, 1648 (2008) https://doi.org/10.1016/j.ssi.2007.10.017
  17. V. G. Ponomareva and E. S. Shutova, Russian J. Electrochem. 43, 513 (2007) https://doi.org/10.1134/S1023193507050035
  18. E. Kanda, A. Tamaki, and T. Fujimura, J. Phys. C 15, 3401 (1982) https://doi.org/10.1088/0022-3719/15/15/012
  19. R. Youngblood, B. C. Frazer, J. Eckert, and G. Shirane, Phys. Rev. B 22, 228 (1980)
  20. M. Wada, A. Sawada, and Y. Ishibashi, J. Phys. Soc. Jpn. 47, 1571 (1979) https://doi.org/10.1143/JPSJ.47.1571
  21. K. Yamada, T. Sagara, Y. Yamane, and H. O. Okuda, Solid State Ionics 175, 557 (2004) https://doi.org/10.1016/j.ssi.2004.03.042
  22. Y. Iwata, N. Koyano, and I. Shibuya, J. Phys. Soc. Jpn. 49, 304 (1980) https://doi.org/10.1143/JPSJ.49.304
  23. A. Ishikawa, H. Maekawa, T. Yamamura, Y. Kawakita, K. Shibata, and M. Kawai, Solid State Ionics 179, 2345 (2008) https://doi.org/10.1016/j.ssi.2008.10.002
  24. E. Kanda and T. Fujimura, J. Phys. Soc. Jpn. 43, 1813 (1977) https://doi.org/10.1143/JPSJ.43.1813
  25. R. Blinc, B. Lozar, B. Topic, and S. Zumer, J. Phys. C: Solid State Phys. 16, 5053 (1983) https://doi.org/10.1088/0022-3719/16/25/014
  26. H. Matsunaga, K. Itoh, and E. Nakamura, J. Phys. Soc. Jpn. 48, 2011 (1980) https://doi.org/10.1143/JPSJ.48.2011
  27. C. E. Botez, J. D. Hermosillo, J. Zhang, J. Qian, Y. Zhao, J. Majzlan, R. R. Chianelli, and C. Pantea, J. Chem. Phys. 127, 194701 (2007) https://doi.org/10.1063/1.2804774
  28. J. Hatori, Y. Matsuo, and S. Ikehata, Solid State Ionics 178, 681 (2007) https://doi.org/10.1016/j.ssi.2007.02.021
  29. Y. Shchur, Phys. Rev. B 74, 54301 (2006)
  30. E. J. Sonneveld and J. W. Wisser, Acta Crystallogr. 35, 1975 (1979) https://doi.org/10.1107/S0567740879008281
  31. D. Semmingsen, W. D. Ellenson, B. S. Frazer, and G. Shirane, Phys. Rev. Lett. 38, 1299 (1971)
  32. Y. Uesu and J. Kobayashi, Phys. Stat. Solidi A 34, 475 (1976) https://doi.org/10.1002/pssa.2210340207
  33. L.N. Rashkovich, K.B. Meteva, Sov. Phys. Crystallogr. 23, 447 (1978)
  34. I. H. Oh, K.-S. Lee, M. Meven, G. Heger, and C. E. Lee, J. Phys. Soc. Jpn. 79, 74606 (2010) https://doi.org/10.1143/JPSJ.79.074606
  35. O. V. Rozanov, Yu. N.Moskvich, and A. A. Sukhovskii, Sov. Phys. Solid State 25, 212 (1983)
  36. A. Abragam, "The Principles of Nuclear Magnetism" Chap. 3, Oxford University Press, Oxford, 1961.
  37. I. G. Lee, K.-Y. Lee, J.-H. Kim, S. Chae, and H.-J. Lee, J. Kor. Mag. Reson. 17, 54 (2013)
  38. Y. K. Paik and C. L. Chang, J. Kor. Mag. Reson. 17, 19 (2013) https://doi.org/10.13104/jksmrm.2013.17.1.19
  39. R. K. Harris, "Nuclear Magnetic Resonance Spectroscopy" Chap. 5, Pitman Pub. INC, London, 1983.
  40. A. Damyanovich, M. M. Pintar, and R. Blinc, J. Slak, Phys. Rev. B 56, 7942 (1997)

Cited by

  1. Study of molecular motion by1H NMR relaxation in ferroelectric LiH3(SeO3)2, Li2SO4·H2O, and LiN2H5SO4single crystals vol.20, pp.1, 2016, https://doi.org/10.6564/JKMRS.2016.20.1.001
  2. Vapor pressure and specific electrical conductivity in the solid and molten H2O-CsH2PO4-CsPO3 system—a novel electrolyte for water electrolysis at ~ 225–400 °C vol.24, pp.9, 2018, https://doi.org/10.1007/s11581-017-2420-3