DOI QR코드

DOI QR Code

Effect of Synthetic Temperature and Time on the Morphology of ZnO Crystals Fabricated by Thermal Evaporation of Al-Zn Mixture

Al-Zn 혼합물의 열 증발을 이용한 ZnO 결정의 합성에서 결정의 형상에 미치는 합성 온도와 시간의 영향

  • Kim, Min-Sung (Department of Information & Communication Engineering, Tongmyong University)
  • 김민성 (동명대학교 정보통신공학과)
  • Received : 2015.05.07
  • Accepted : 2015.05.20
  • Published : 2015.06.27

Abstract

ZnO micro/nanocrystals at large scale were synthesized through the thermal evaporation of Al-Zn mixtures under air atmosphere. The effect of synthetic temperature and time on the morphology of the micro/nanocrystals was examined. It was found that the temperature and time affected the morphology of the ZnO crystals. At temperatures below $900^{\circ}C$, no crystals were synthesized. At a temperature of $1000^{\circ}C$, ZnO crystals with a rod shape were synthesized. With an increase in temperature from $1000^{\circ}C$ to $1100^{\circ}C$, the morphology of the crystals changed from rod shape to wire and granular shapes. As the time increased from 2 h to 3 h at $1000^{\circ}C$, tetrapod-shaped ZnO crystals started to form. XRD patterns showed that the ZnO crystals had a hexagonal wurtzite structure. EDX analysis revealed that the ZnO crystals had high purity. It is believed that the ZnO nanowires were grown via a vapor-solid mechanism because no catalyst particles were observed at the tips of the micro/nanocrystals in the SEM images.

Keywords

References

  1. J. Q. Hu, X. L. Ma, Z. Y. Xie and N. B. Wong, Chem. Phys. Lett., 344(1-2), 97 (2001). https://doi.org/10.1016/S0009-2614(01)00720-5
  2. B. M. Ataev, A. M. Bagamadova, V. V. Mamedov and A. K. Omaev, Mater. Sci. Eng. B, 65(11), 159 (1999). https://doi.org/10.1016/S0921-5107(99)00166-X
  3. I. A. Palani, D. Nakamura, K. Okazaki, M. Higashihata and T. Okada, Mater. Sci. Eng. B, 176(18), 1526 (2011). https://doi.org/10.1016/j.mseb.2011.09.017
  4. J. P. Biethan, V. P. Sirkeli, L. Considine, D. D. Nedeoglo, D. Pavlidis and H. L. Hartnagel, Mater. Sci. Eng. B, 177(8), 594 (2012). https://doi.org/10.1016/j.mseb.2012.03.008
  5. L. Vayssieres, Adv. Mater., 15(5), 464 (2003). https://doi.org/10.1002/adma.200390108
  6. G. H. Lee and M. S. Kim, Mater. Trans., 50(8), 2121 (2009), https://doi.org/10.2320/matertrans.M2009137
  7. S. J. Kim, W. J. Lee, B. C. Shin, I. S. Kim and G. H. Lee, Jpn. J. Appl. Phys., 44(1B), 739 (2005). https://doi.org/10.1143/JJAP.44.739
  8. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Appl. Phys. Lett., 68(5), 403 (1996). https://doi.org/10.1063/1.116699
  9. R. R. Kumar, K. N. Rao and A. R. Phani, Mater. Lett., 66(1), 110 (2012). https://doi.org/10.1016/j.matlet.2011.08.064
  10. L. Yu, Y. Lv, X. Zhang, Y. Zhang, R. Zou and F. Zhang, J. Crys. Growth, 334(1), 57 (2011). https://doi.org/10.1016/j.jcrysgro.2011.08.025