DOI QR코드

DOI QR Code

Effect of surface-treatments on flexibility and guided bone regeneration of titanium barrier membrane

  • Kim, Jin-Tae (Dental Materials Research Center, Neobiotech Co., Ltd.) ;
  • Kim, Byoung Soo (Dental Materials Research Center, Neobiotech Co., Ltd.) ;
  • Jeong, Hee Seok (Dental Materials Research Center, Neobiotech Co., Ltd.) ;
  • Heo, Young Ku (Dental Materials Research Center, Neobiotech Co., Ltd.) ;
  • Shin, Sang-Wan (Institute for Clinical Dental Research, Korea University) ;
  • Lee, Jeong-Yol (Institute for Clinical Dental Research, Korea University) ;
  • Shim, Young Ho (Institute for Clinical Dental Research, Korea University) ;
  • Lee, Deuk Yong (Department of Biomedical Engineering, Daelim University)
  • Received : 2015.04.07
  • Accepted : 2015.05.08
  • Published : 2015.06.30

Abstract

Titanium barrier membranes are prepared to investigate the effect of surface-treatments, such as machining, electropolishing, anodizing, and electropolishing + TiN coating, on the biocompatibility and physical properties of the membranes. The surface roughness (Ra) of the membrane decreases from machining ($0.37{\pm}0.09{\mu}m$), TiN coating ($0.22{\pm}0.09{\mu}m$), electropolishing ($0.20{\pm}0.03{\mu}m$), to anodizing ($0.15{\pm}0.03{\mu}m$). The highest ductility (24.50 %) is observed for the electropolished Ti membrane. No evidence of causing cell lysis or toxicity is found for the membranes regardless of the surface-treatments. Cell adhesion results of L-929 and MG-63 show that the machined Ti membrane exhibits the highest cell adhesion while the electropolished membrane is the best membrane for the L-929 cell proliferation after 7 days. However, no appreciable difference in MG-63 cell proliferation among variously surface-treated membranes is detected, suggesting that the electropolished Ti membrane is likely to be the best membrane due to the synergic combination of tailored flexibility and excellent fibroblast proliferation.

Keywords

References

  1. C.N. Elias, J.H.C. Lima, R. Valiev and M.A. Meyers, "Biomedical applications of titanium and its alloys", JOM, 46 (March 2008).
  2. Y. Okazaki, "A new Ti-15Zr-4Nb-4Ta alloy for medical applications", Curr. Opinion Solid State Mater. Sci. 5 (2001) 45. https://doi.org/10.1016/S1359-0286(00)00025-5
  3. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina and M. Mabuchi, "Processing and mechanical properties of autogenous titanium implant materials", J. Mater. Sci.: Mater. Med. 13 (2002) 397. https://doi.org/10.1023/A:1014344819558
  4. F. Watzinger, J. Luksch, W. Millesi, C. Schopper, J. Neugebauer, D. Moser and R. Ewers, "Guided bone regeneration with titanium membranes: A clinical study", British J. Oral. Mixillofac. Surg. 38 (2000) 312. https://doi.org/10.1054/bjom.1999.0228
  5. E. Kfir, V. Kfir and E. Kaluski, "Immediate bone augmentation after infected tooth extraction using titanium membranes", J. Oral. Implantol. 33 (2007) 133. https://doi.org/10.1563/1548-1336(2007)33[133:IBAAIT]2.0.CO;2
  6. B.S. McAllister and K. Haghighat, "Bone augmentation techniques", J. Periodontol. 78 (2007) 377. https://doi.org/10.1902/jop.2007.060048
  7. M. Hong, Y.H. Kim, D. Ganbat, D. Kim, C. Bae and D.S. Oh, "Capillary action: Enrichment of retention and habitation of cells via micro-channeled scaffolds for massive bone defect regeneration", J. Mater. Sci.: Mater. Med. 25 (2014) 1991.
  8. D.S. Oh, Y.H. Kim, D. Ganbat, M. Han, P. Lim, J. Back, F.Y. Lee and H. Tawfeek, "Bone marrow absorption and retention properties of engineered scaffolds with micro-channels and nano-pores for tissue engineering: A proof of concept", Ceram. Intl. 39 (2013) 8401. https://doi.org/10.1016/j.ceramint.2013.04.021
  9. N.S. Turker, A.Y. Ozer, B. Kutlu, R. Nohutcu, A. Sungur, H. Bilgili, M. Ekizoglu and M. Ozalp, "The effect of gamma radiation sterilization on dental biomaterials", Tissue Eng. Regen. Med. 11 (2014) 341. https://doi.org/10.1007/s13770-014-0016-9
  10. J. Kim and H. Kim, "Rat defect models for bone grafts and tissue engineered bone constructs", Tissue Eng. Regen. Med. 10 (2013) 310. https://doi.org/10.1007/s13770-013-1093-x
  11. J. Kim, D.Y. Lee, T. Kim, Y. Song and N. Cho, "Biocompatibility of hyaluronic acid hydrogels prepared by porous hyaluronic acid microbeads", Met. Mater. Intl. 20 (2014) 555. https://doi.org/10.1007/s12540-014-3022-5
  12. K. Chae, H. Choi, J. Ahn, Y. Song and D.Y. Lee, "Application of taguchi method and orthogonal arrays for characterization of corrosion rate of $IrO_2-RuO_2$ film", J. Mater. Sci. 37 (2002) 3515. https://doi.org/10.1023/A:1016575425744
  13. Y. Song, Y. Nam, K. Lee and D.Y. Lee, "Microstructure and chemical properties of c-BN films prepared by ME-ARE", Mater. Sci. Forum 449-452 (2004) 465. https://doi.org/10.4028/www.scientific.net/MSF.449-452.465
  14. E. Kfir, V. Kfir and E. Kaluski, "Immediate bone augmentation after infected tooth extraction using titanium membranes," J. Oral. Implantol. 33 (2007) 133. https://doi.org/10.1563/1548-1336(2007)33[133:IBAAIT]2.0.CO;2
  15. J. Torres, F. Tamimi, M.H. Alkhraisat, A. Manchon, R. Linares, J.C. Prados-Frutos, G. Hernandez and E.L. Cabarcos, "Platelet-rich plasma may prevent titaniummesh exposure in alveolar ridge augmentation with anorganic bovine bone," J. Clin. Periodontol. 37 (2010) 943. https://doi.org/10.1111/j.1600-051X.2010.01615.x
  16. W. Zhong, G. Ma, Y. Wang, R. Tamamura and J. Xiao, "Augmentation of peri-implant bone defects with different bone grafts and guided bone regeneration: a pilot experimental study in the dog", J. Hard. Tissue Bio. 15 (2006) 82. https://doi.org/10.2485/jhtb.15.82

Cited by

  1. Mechanical properties and cytotoxicity of PLA/PCL films vol.8, pp.3, 2018, https://doi.org/10.1007/s13534-018-0065-4