DOI QR코드

DOI QR Code

SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS

  • GAN, WENZHEN (SCHOOL OF MATHEMATICS AND PHYSICS JIANGSU UNIVERSITY OF TECHNOLOGY) ;
  • ZHU, PENG (SCHOOL OF MATHEMATICS AND PHYSICS JIANGSU UNIVERSITY OF TECHNOLOGY)
  • Received : 2013.12.31
  • Published : 2015.07.31

Abstract

This paper is concerned with the pattern formation of a diffusive predator-prey model with two time delays. Based upon an analysis of Hopf bifurcation, we demonstrate that time delays can induce spatial patterns under some conditions. Moreover, by use of a series of numerical simulations, we show that the type of spatial patterns is the spiral wave. Finally, we demonstrate that the spiral wave is asymptotically stable.

Keywords

References

  1. E. Baker, E. A. Gaffney, and P. K. Maini, Partial differential equations for self-organization in cellular and developmental biology, Nonlinearity 21 (2008), no. 11, 251-290. https://doi.org/10.1088/0951-7715/21/11/R05
  2. M. Banerjee and L. Zhang, Influence of discrete delay on pattern formation in a ratio-dependent prey-predator model, Chaos, Soliton Fractals 67 (2014), 73-81. https://doi.org/10.1016/j.chaos.2014.06.012
  3. Q. Y. Bie, Q. R. Wang, and Z. A. Yao, Cross-diffusion induced instability and pattern formation for a Holling type-II predator-prey model, Appl. Math. Comput. 247 (2014), 1-12. https://doi.org/10.1016/j.amc.2014.08.088
  4. W. Z. Gan, P. Zhu, and J. Bao, Cross-diffusion induced instability in Lvlev-Tanner model, Int. J. Biomath. 4 (2011), no. 4, 431-442. https://doi.org/10.1142/S1793524511001301
  5. D. Horstmann, Remarks on some Lotka-Volterra type cross-diffusion models, Nonlinear Anal. Real World Appl. 8 (2007), no. 1, 90-117. https://doi.org/10.1016/j.nonrwa.2005.05.008
  6. K. Kishimoto and H. F.Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations 58 (1985), no.1, 15-21. https://doi.org/10.1016/0022-0396(85)90020-8
  7. X. Lian, H. Wang, andW. Wang, Delay-driven pattern formation in a reaction-diffusion predator-prey model incorporating a prey refuge, J. Stat. Mech. Theory Exp. (2013), no. 4, P04006, 16 pp.
  8. X. Z. Lian, S. L. Yan, and H. L. Wang, Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion, Abstr. Appl. Anal. 2013 (2013), Art. ID 147232, 10 pp.
  9. A. Madzvamuse and R. Barreia, Exhibiting cross-difussion-induced patterns for reaction-diffusion systems on evolving domains and surfaces, Phys. Rev. E 90 (2014), 043307. https://doi.org/10.1103/PhysRevE.90.043307
  10. J. D. Murray, Mathematical Biology, Vol 19. Biomathematics Texts, Springer, Berlin, 1993.
  11. K. J. Painter, P. K. Maini, and H. G. Othmer, Development and applications of a model for cellular response to multiple chemotactic cues, J. Math. Biol. 41 (2000), no. 4, 285-314. https://doi.org/10.1007/s002850000035
  12. P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations 200 (2004), no. 2, 245-273. https://doi.org/10.1016/j.jde.2004.01.004
  13. S. Sen, P. Ghosh, S. S. Riaz, and D. S. Ray, Time-delay-induced instabilities in reaction diffusion system, Phys. Rev. E 80 (2009), 046212. https://doi.org/10.1103/PhysRevE.80.046212
  14. J. P. Shi, Z. F. Xie, and K. Little, Cross-diffusion induced instability and stability in reactiond-diffusions systems, J. Appl. Anal. Comput. 24 (2010), 95-119.
  15. C. R. Tian, Delay-driven spatial patterns in a plankton allelopathic system, Chaos 22 (2012), 013129. https://doi.org/10.1063/1.3692963
  16. C. R. Tian and L. Zhang, Delay-driven irregular spatiotemporal patterns in a plankton system, Phys. Rev. E 88 (2013), 012713.
  17. C. R. Tian and L. Zhang, Hopf bifurcation analysis in a diffusive food-chain model with time delay, Comput. Math. Appl. 66 (2013), no. 10, 2139-2153. https://doi.org/10.1016/j.camwa.2013.09.002
  18. C. R. Tian, L. Zhang, and Z. G. Lin, Pattern formation for a model of plankton allelopathy with cross-diffusion, J. Franklin Inst. 348 (2011), no. 8, 1947-1964. https://doi.org/10.1016/j.jfranklin.2011.05.013
  19. A. M. Turing, The chemical basisi of morphogenesis, Phil. Trans. London Ser. B 237 (1952), 37-72. https://doi.org/10.1098/rstb.1952.0012
  20. J. F. Wang, J. P. Shi, and J. J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differential Equations 251 (2011), no. 4-5, 1276-1304. https://doi.org/10.1016/j.jde.2011.03.004
  21. W. M. Wang, L. Zhang, H. L. Wang, and Q. L. Zheng, Pattern formation of a predator-prey system with Ivlev-type functional response, Ecological Modelling 221 (2010), 131-140. https://doi.org/10.1016/j.ecolmodel.2009.09.011
  22. L. Wolpert, The development of pattern and form in animals, Carol. Biol. Read. 1 (1977), 1-16.
  23. X. C. Zhang, G. Q. Sun, and Z. Jin, Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response, Phys. Rev. E 85 (2012), 021924. https://doi.org/10.1103/PhysRevE.85.021924