DOI QR코드

DOI QR Code

후지 사과의 산지에 따른 부위별 항산화 활성 비교

Comparison of Antioxidative Activities of Fuji Apples Parts according to Production Region

  • 방혜열 (덕성여자대학교 식품영양학과) ;
  • 조순덕 (덕성여자대학교 식품영양학과) ;
  • 김동만 (한국식품연구원) ;
  • 김건희 (덕성여자대학교 식품영양학과)
  • Bang, Hye-Yeol (Department of Food & Nutrition, Duksung Women's University) ;
  • Cho, Sun-Duk (Department of Food & Nutrition, Duksung Women's University) ;
  • Kim, Dongman (Korea Food Research Institute) ;
  • Kim, Gun-Hee (Department of Food & Nutrition, Duksung Women's University)
  • 투고 : 2014.12.05
  • 심사 : 2015.03.12
  • 발행 : 2015.04.30

초록

본 연구에서는 Fuji 사과의 기능성 확인을 위해 산지별, 부위별 일반 성분 및 항산화 성분을 비교 분석하였다. 에탄올 추출물을 이용하여 항산화 활성을 분석한 결과 DPPH radical 소거 활성은 충주지역 사과에서 과피 82.84%, 과피근접 과육 26.98%, 과육 18.89% 등으로 다른 지역에 비해 낮은 값을 나타냈으나(P<0.01) 과심은 48.64%로 과피근접과육이나 과육보다 높았다. ABTS radical 소거 활성 측정 결과 과피는 안동지역 사과가 79.80%, 과피근접과육 및 과육은 예산지역이 각각 30.29%, 30.48%로 가장 높게 나타났으나(P<0.01) 과심은 충주지역이 52.34%로 타 지역에 비해 2배 이상의 높은 활성을 보였다. 총 페놀 함량의 경우 무주지역 사과의 과피에서 12.03 mg GAE/g, 안동지역 과피근접과육 6.01 mg GAE/g, 예산지역 과육 5.57 mg GAE/g 등에서 유의적으로 높은 함량을 보였으나 과심에서는 과피, 과피근접과육, 과육에서 유의적으로 가장 낮은 충주지역의 사과가 6.53 mg GAE/g으로 상대적으로 높은 활성(P<0.01)을 보여주었다. 총 플라보노이드의 경우 과피, 과피근접과육 및 과심에서는 예산지역의 사과가 각각 56.23 mg QE/g(P<0.01), 4.05 mg QE/g(P<0.05), 4.00 mg QE/g(P<0.01)으로 높은 함량을 보였으며, 과육에서는 안동지역의 사과가 4.35 mg QE/g(P<0.01)으로 비교적 높은 함량을 나타내었다. 이상의 결과를 통해 전통적으로 후지 사과의 주 재배지로 인식하고 있는 경남지역과 비교할 때 나머지 지역이 후지 사과의 품질 특성 및 항산화 활성에 있어 충분한 경쟁력을 갖고 있는 것으로 판단되었다. 5개 지역 모두 부위별로는 과육에 비하여 과피 부분의 항산화 활성이 상대적으로 높게 나타났으며 과피근접 부분의 항산화 활성 역시 높게 나타나 섭취 시 과실의 가식 부위를 최대화시킬 필요가 있음을 알 수 있었다. 또한 과심 부분 역시 과육에 상당하는 항산화 활성이 나타나 식량자원의 효과적인 활용을 위해 비가식부위로 인식되는 사과 부산물의 적극적인 활용방안 및 제품개발 제고의 필요성을 확인할 수 있었다.

To observe the functionality of Fuji apples, this study compared and analyzed the general and anti-oxidative components of apples based on production region. This study found that DPPH radical scavenging activities among parts of apple from the Chungju region were 82.84% in peels, 26.98% in peel-flesh, and 18.89% in apple flesh, and these values were lower than those from other regions (P<0.01). Antioxidative was 48.64% in the apple core, which was higher than those in peel-flesh and apple flesh. ABTS radical scavenging activity was highest (79.80%) in peels of apples from the Andong region, whereas values in peel-flesh and apple flesh were highest in apples from the Yesan region (P<0.01). For antioxidative activities in the apple core, apples from the Chungju region showed more than twice the value (52.34%) of other regions. Phenol contents in peels were significantly high [12.03 mg gallic acid equivalent (GAE)/g] in apples from the Muju region, whereas phenol contents in peel-flesh were high (6.01 mg GAE/g) in those from the Andong region. Antioxidative activity in apple flesh was significantly high (5.57 mg GAE/g) in apples from the Yesan region. For antioxidative activities in the apple core, apples from Chungju region showed a relatively high value (6.53 mg GAE/g) (P<0.01), although values were low in apple peel, peel-flesh, and apple flesh. For the combined amount of flavonoids, values in apples from the Yesan region were high in apple peel, peel-flesh, and apple core [56.23 mg quercetin equivalent (QE)/g (P<0.01), 4.05 mg QE/g (P<0.05), and 4.00 mg QE/g (P<0.01), respectively], whereas flavonoid content in apples from the Andong region was high in apple flesh [4.35 mg QE/g (P<0.01)]. The results show that anti-oxidative activities were relatively higher in apple peel than flesh.

키워드

참고문헌

  1. Kim MJ, Kim YG, Kim HS, Cheong C, Hang KH, Kang SA. 2014. Effects of antioxidant activities in ethanol of apple peel, grape peel and sweet potato peel as natural antioxidant. J Korea Acad-Ind Coop Soc 15: 3766-3773.
  2. Korean Statistical Information Service. 2014. Crop production survey-Vegetable production. http://kosis.kr/statisticsList/statisticsList_01List.jsp?vwcd=MT_ZTITLE&parmTabId=M_01_01#SubCont (accessed Dec 2014).
  3. Park JY, Ryu HU, Shin HS, Lim HK, Son IC, Kim DI, Jeong HS, Lee JS. 2012. Effects of CuEDTA and FeEDTA foliar spray on antioxidant activities of apple. J Korean Soc Food Sci Nutr 41: 1305-1309. https://doi.org/10.3746/jkfn.2012.41.9.1305
  4. Kim SH, Park I. 2013. Comparison of antioxidant activities of various meat broths served with oriental noodles. Korean J Food & Nutr 26: 150-153. https://doi.org/10.9799/ksfan.2013.26.1.150
  5. Heras-Ramirez ME, Quintero-Ramos A, Camacho-Davila AA, Barnard J, Talamas-Abbud R, Torres-Munoz JV, Salas-Munoz E. 2012. Effect of blanching and drying temperature on polyphenolic compound stability and antioxidant capacity of apple pomace. Food Bioprocess Technol 5: 2201-2210. https://doi.org/10.1007/s11947-011-0583-x
  6. Alvarez-Parrilla E, De La Rosa LA, Torres-Rivas F, Rodrigo-Garcia J, Gonzalez-Aguilar GA. 2005. Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by ${\beta}$-cyclodextrin (${\beta}$-CD). J Inclusion Phenom Macrocyclic Chem 53: 121-129. https://doi.org/10.1007/s10847-005-1620-z
  7. Stracke BA, Rufer CE, Bub A, Seifert S, Weibel FP, Kunz C, Watzl B. 2010. No effect of the farming system (organic/conventional) on the bioavailability of apple (Malus domestica Bork., cultivar Golden Delicious) polyphenols in healthy men: a comparative study. Eur J Nutr 49: 301-310. https://doi.org/10.1007/s00394-009-0088-9
  8. Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN. 2000. Intake of flavonoids and lung cancer. J Natl Cancer Inst 92: 154-160. https://doi.org/10.1093/jnci/92.2.154
  9. Tabak C, Arts IC, Smit HA, Heederik D, Kromhout D. 2001. Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones: the MORGEN Study. Am J Respir Crit Care Med 164: 61-64. https://doi.org/10.1164/ajrccm.164.1.2010025
  10. Knekt P, Isotupa S, Rissanen H, Heliovaara M, Jarvinen R, Hakkinen S, Aromaa A, Reunanen A. 2000. Quercetin intake and the incidence of cerebrovascular disease. Eur J Clin Nutr 54: 415-417. https://doi.org/10.1038/sj.ejcn.1600974
  11. Bortolotto V, Piangiolino C. 2013. Apple biophenol synergistic complex and its potential benefits for cardiovascular health. Nutrafoods 12: 71-79. https://doi.org/10.1007/s13749-013-0029-3
  12. Ravn-Haren G, Dragsted LO, Buch-Andersen T, Jensen EN, Jensen RI, Nemeth-Balogh M, Paulovicsova B, Bergstrom A, Wilcks A, Licht TR, Markowski J, Bugel S. 2013. Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers. Eur J Nutr 52: 1875-1889. https://doi.org/10.1007/s00394-012-0489-z
  13. Jiang H, Ji G, Liang J, Zhou F, Yang Z, Zhang G. 2006. Changes of contents and antioxidant activities of polyphenols during fruit development of four apple cultivars. Eur Food Res Technol 223: 743-748. https://doi.org/10.1007/s00217-006-0262-8
  14. Kim SI, Sim KH, Ju SY, Han YS. 2009. A study of antioxidative and hypoglycemic activities of Omija (Schizandra chinensis Baillon) extract under variable extract conditions. Korean J Food & Nutr 22: 41-47.
  15. Byun MW. 2013. Immunomodulatory activities of apple seed extracts on macrophage. J Korean Soc Food Sci Nutr 42: 1513-1517. https://doi.org/10.3746/jkfn.2013.42.9.1513
  16. Jeong HR, Jo YN, Jeong JH, Jin DE, Song BG, Hoe HJ. 2011. Whitening and anti-wrinkle effects of apple extracts. Korean J Food Preserv 18: 597-603. https://doi.org/10.11002/kjfp.2011.18.4.597
  17. Kim JY, Kim SY, Kwon HM, Kim CH, Lee SJ, Park SC, Kim KH. 2014. Comparison of antioxidant and anti-inflammatory activity on chestnut, chestnut shell and leaves of Castanea crenata extracts. Korean J Medicinal Crop Sci 22: 8-16. https://doi.org/10.7783/KJMCS.2014.22.1.8
  18. Shin SL, Lee CH. 2011. Effective extraction of phytoecdysteroids from fronds of Matteuccia struthiopteris and Osmunda japonica. Korean J Plant Res 24: 351-357. https://doi.org/10.7732/kjpr.2011.24.4.351
  19. Lee JW, Kim SH, Hong SI, Jeong MC, Park HW, Kim DM. 2003. Internal and external quality of fuji apples. Korean J Food Preserv 10: 47-53.
  20. Ramos A, Visozo A, Piloto J, Garcia A, Rodriguez CA, Rivero R. 2003. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J Ethnopharmacol 87: 241-246. https://doi.org/10.1016/S0378-8741(03)00156-9
  21. Park MJ, Kim GH. 2013. The antioxidative and antibrowning effects of citrus peel extracts on fresh-cut apples. Korean J Food Sci Technol 45: 598-604. https://doi.org/10.9721/KJFST.2013.45.5.598
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Jeong CH, Choi SG, Heo HJ. 2008. Analysis of nutritional compositions and antioxidative activities of Korean commercial blueberry and raspberry. J Korean Soc Food Sci Nutr 37: 1375-1381. https://doi.org/10.3746/jkfn.2008.37.11.1375
  24. Richard-Forget FC, Goupy RF, Nicolas JJ. 1992. Cysteine as an inhibitor of enzymatic browning. 2. Kinetic studies. J Agric Food Chem 40: 2108-2113. https://doi.org/10.1021/jf00023a014
  25. Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F, Trotin F. 2000. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72: 35-42. https://doi.org/10.1016/S0378-8741(00)00196-3
  26. Chung DS, Cho MA. 2010. Research on quality grading and standardization on high quality of apple fruits. Kor J Hort Sci Technol 28(Suppl I): P-2-3-230.
  27. Won HR, Park MW, Choi MY. 2005. Antioxidant properties of unripened apple extracts. Korean J Community Living Science 16: 11-16.
  28. Lee PH, Park SY, Jang TH, Yim SH, Nam SH, In MJ, Kim DC, Chae HJ. 2014. Effects of complex carbohydrase treatment on physiological activities of pear peel and core. J Korean Soc Food Sci Nutr 43: 404-410. https://doi.org/10.3746/jkfn.2014.43.3.404
  29. Lee JH, Kim YC, Kim MY, Chung HS, Chung SK. 2000. Antioxidative activity and related compounds of apple pomace. Korean J Food Sci Technol 32: 908-913.

피인용 문헌

  1. Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.651
  2. Production of fermented apple juice using Lactobacillus plantarum JBE245 isolated from Korean traditional Meju vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.445
  3. Antioxidant Activity of Major Cultivars Prunus mume in Korea vol.26, pp.3, 2018, https://doi.org/10.11625/KJOA.2018.26.3.477
  4. Assessment of Electrical Conductivity of Saturated Soil Paste from 1:5 Soil-Water Extracts for Reclaimed Tideland Soils in South-Western Coastal Area of Korea vol.38, pp.2, 2015, https://doi.org/10.5338/kjea.2019.38.2.11