DOI QR코드

DOI QR Code

Study on Binders for Preparing Antistatic Films of PEDOT/PSS

대전방지 PEDOT/PSS 필름 제조를 위한 바인더에 관한 연구

  • Kim, Seok Jun (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Park, Wan-Su (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Hwang, Jung Seok (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Pak, Na Young (EverChemTech Co., Ltd.) ;
  • Choi, Young Ju (EverChemTech Co., Ltd.) ;
  • Chung, Dae-won (Department of Polymer Engineering, College of Engineering, Suwon University)
  • 김석준 (수원대학교 공과대학 신소재공학과) ;
  • 박완수 (수원대학교 공과대학 신소재공학과) ;
  • 황정석 (수원대학교 공과대학 신소재공학과) ;
  • 박나영 ((주)에버켐텍) ;
  • 최영주 ((주)에버켐텍) ;
  • 정대원 (수원대학교 공과대학 신소재공학과)
  • Received : 2015.04.22
  • Accepted : 2015.05.17
  • Published : 2015.08.10

Abstract

It is essential to employ a binder to prepare transparent films from conductive polymer such as poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT/PSS). In this paper, poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), and PSS were selected as a binder, and their effects were investigated. The formation of the film was found to be primarily dependent on the surface tension of coating solution including PEDOT/PSS and a binder. When PSS was used as a binder, the film was not formed. In case of using PVP, it was easily peeled off from the substrate. However, when using the PVA or the mixtures of PVA and PSS or PVA and PVP as a binder, films with good transparency and uniform surface resistances were produced. Based on adhesion and long-term stability tests, we concluded that the mixture of PVA and PSS is the best binder for preparing antistatic films of PEDOT/PSS.

전도성 고분자인 poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT/PSS)의 투명한 필름을 제조하기 위해서는 바인더의 사용이 반드시 필요하다. 본 연구에서는 poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP) 및 PSS를 바인더로서 검토하여 그 특성을 비교하였다. PEDOT/PSS 필름의 형성 여부는 기본적으로 바인더를 포함하는 코팅액의 표면장력 값에 의존하였다. PSS 또는 PVP를 바인더로 사용하였을 때는 필름이 형성되지 않거나 필름이 기재로 부터 쉽게 박리되는 현상이 나타났다. 그러나 PVA를 단독으로 사용하거나 또는 PSS 및 PVP를 PVA와 혼합하여 사용하면 투명하며 균일한 표면저항 값을 나타내는 대전방지 필름을 얻을 수 있었다. 필름의 접착력 및 장기 보관 안정성 등을 종합적으로 판단하면, PEDOT/PSS의 대전방지용 필름을 제조하기 위한 바인더로서는 PVA와 PSS의 혼합물이 최적인 것으로 나타났다.

Keywords

References

  1. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x, J. Chem. Soc., Chem. Commun., 16, 578-580 (1997).
  2. J. H. Hong and K. S. Jang, Synthesis and Characterization of Soluble Polypyrrole with High Conductivity, J. Korean Ind. Eng. Chem., 18, 234-238 (2007).
  3. Y. H. Lee, Y. W. Ju, H. R. Jung, Y. I. Huh, and W. J. Lee, Preparation of Polypyrrole/Sulfonated-SEBS Conducting Composites Through an Inverted Emulsion Pathway, J. Ind. Eng. Chem., 11, 550-555 (2005).
  4. J. M. Lee and K. H. Lim, Electrochemical Synthesis of Conducting Polythiophene in an Ultrasonic Field, J. Ind. Eng. Chem., 6, 157-162 (2000).
  5. H. Munstedt, Ageing of Electrically Conducting Organic Materials, Polymer, 29, 296-302 (1988). https://doi.org/10.1016/0032-3861(88)90337-0
  6. S. G. Park, J. J. Na, J. S. Lee, and R. A. Osteryoung, Characteristics of Film Preparation with Conducting Polyphenylenediamine Powder, J. Ind. Eng. Chem., 2, 181-188 (1996).
  7. A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, and K. Revter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, 199-200, CRC Press, Boca Raton, FL, USA (2010).
  8. K. Ando, Z. Kato, N. Uchida, K. Uematsu, and K. Saito, Wetting of aqueous solutions of organic binder (PVA) on sapphire and fused quartz, J. Mater. Sci., 24, 4048-4051 (1989). https://doi.org/10.1007/BF01168972
  9. S. Mandai and Y. Hirai, Polyvinylalcohol Applied for The Ink Jet Silica Binder-Application of Crosslinkable PVA Gohsefimer Z-, Japan Tappi J., 58, 1555-1562 (2004). https://doi.org/10.2524/jtappij.58.1555
  10. S. Wan, W. Z. Lu, Z. X. Fu, and X. C. Wang, Aqueous tape casting of ZnO varistor ceramics with PVA as binder and their properties, Electron. Compon. Mater, 34, 13-17 (2012).
  11. J. Cao, H. L. Lin, L. H. Yho, Y. Shi, and P. J. Xia, Chemical Sensitization of Sodium Benzenesulfinate in Photothermographic Materials Using PVA as Binder, J. Photochem. Photobiol., 23, 247-252 (2005).
  12. J. Cao, H. L. Lin, L. H. Yao, X. Zhi, J. P. Li, and P. J. Xia Effects of Grain Size and Content of AgBr on Sensitivity of PTG Materials Using PVA as a Hydrophilic Binder, Photogr. Sci. Photochem., 23, 6-13 (2005).
  13. J. Cao, H. L. Lin, L. H. Yao, Y. Shi, J. P. Li, and P. J. Xia, Effects of Conventional Chemical Sensitivity of PTG Materials Using PVA as a Hydrophilic Binder, Photogr. Sci. Photochem., 23, 108-113 (2005).
  14. U. Kim and W. M. Carty, The Effect of Solution Chemistry on PVA Binder Migration, Ceram. Eng. Sci. Proc., 24, 183 (2003).
  15. M. Moshen-Nia and M. Hamid, Viscometric study of aqueous poly(vinyl alcohol) (PVA) solutions as a binder in adhesive formulations, J. Adhesion Sci. Technol., 20, 1273-1280 (2006). https://doi.org/10.1163/156856106778456636
  16. J. H. Cheng and D. J. Wen, An Aqueous Photocrosslinkable Chitosan-PVA (Polyvinyl Alcohol) Binder for Tapecasting Alumina Substrates, Key. Eng. Mater., 368-372, 656-658 (2008). https://doi.org/10.4028/www.scientific.net/KEM.368-372.656
  17. L. Suhrenbrock, G. Radtke, and K. Knop, Suspension pellet layering using PVA-PEG graft copolymer as a new binder, Int. J. Pharm., 412, 28-36 (2011). https://doi.org/10.1016/j.ijpharm.2011.03.061
  18. W. X. Yuan and Z. J. Li, Effects of PVA organic binder on electric properties of $CaCu_3Ti_4O_{12}$ ceramics, J. Chem. Phy., 73, 599-603 (2012).
  19. H. Miura, K. Morohosh, J. Okada, B. Lin, and M. Kimura, Tensile Strength and Conductive Performance of PVA and PEDOT/PSS Blended Fiber, SEN'I GAKKAISHI, 66, 280-283 (2010). https://doi.org/10.2115/fiber.66.280
  20. N. Romyen, S. Thongyai, P. Preserthdam, and G. A. Sotzing, Enhancement of poly(3,4-ethylenedioxy thiophene) / poly(styrene sulfonate) properties by poly(vinyl alcohol) and doping agent as conductive nano-thin film for electronic application, J. Mater. Sci., 24, 2897-2905 (2013).
  21. S. C. Biswas, L. Dubreil, and D. Marion, Interfacial Behavior of Wheat Puroindolines: Study of Adsorption at the Air-Water Interface from Surface Tensio Measurement Using Wilhelmy Plate Method, J. Coll. Interf. Sci., 244, 245-253 (2001). https://doi.org/10.1006/jcis.2001.7940
  22. M. A. Mckee, B. S. Yoo, and R. A. Stall, Uniform growth of InSb on GaAs in a rotating disk reactor by LP-MOVPE, J. Cryst. Growth, 124, 286-291 (1992). https://doi.org/10.1016/0022-0248(92)90473-V
  23. H. Ji, H. M. Lim, Y. W. Chang, and H. S. Lee, Comparison of the Viscosity of Ceramic Slurries using a Rotational Rheometerand a Vibrational Viscometer, J. Korean Ceram. Soc., 49, 542-548 (2012). https://doi.org/10.4191/kcers.2012.49.6.542
  24. M. H. Ahn, E. S. Cho, and S. J. Kwon, Process Optimization of ITO Film on PC Substrate Deposited by In-line Sputtering Method for a Resistive-type Touch Panel, J. Korean Vacuum. Soc., 6, 440-446 (2009).
  25. J. Y. Kim, H. J. Yang, N. Y. Pak, Y. J. Choi, S. M. Lee, and D. W. Chung, Study on the Synthesis of the Binder for Antistatic Coating Applicable under High Voltage, Appl. Chem. Eng., 24, 196-200 (2013).
  26. J. Y. Chea, J. K. Yoon, O. G. Kang, B. J. Ryn, and K. W. Koo, The Electrical Characteristics of the Antistatic Wafer Carrier, Trans Korean Inst Electr Eng., 63, 319-324 (2014). https://doi.org/10.5370/KIEE.2014.63.2.319
  27. H. L. Wang, D, W. Mcbranch, V. I. klimov, and R. Helgeson, Controlled unidirectional energy transfer in luminescent self-assembled conjugated polymer superlattices, Chem. Phys. Lett., 315, 173-180 (1999). https://doi.org/10.1016/S0009-2614(99)01176-8
  28. J. W. Bae, S. H. Cha, and J. N. Park, A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery, Macro. Mol. Res., 1, 826-831 (2013).
  29. A. Kaminska, H. Kaczmarek, and J. Kowalonek, The Influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action, Eur. Polym. J., 38, 1915-1919 (2002). https://doi.org/10.1016/S0014-3057(02)00059-9
  30. H. W. Chung and S. R. Kim, Detergency of PET Film Having Various Surface Free Energy: Part 1. Surface Tension of MAA Grafted PET Film, J. Korean Soc. Cloth Text, 12, 217-223 (1988).
  31. M. C. M. Zaccaron, R. V. B Oliveira, M. Guiotoku, A. T. N. Pires, and V. Soldi, Blends of hydroxypropyl methylcellulose and poly(1-vinylpyrrolidon -co-vinyl acetate) Miscibility and thermal stability, Polym. Degrad. Stab., 90, 21-27 (2005). https://doi.org/10.1016/j.polymdegradstab.2005.02.010
  32. R. Jayasekara, I. Harding, I. Bowater, G. B. Y. Christie, and G. T. Lonergan, Preparation, surface modification and characterisation of solution cast starch PVA blended films, Polym. Test., 23, 17-27 (2004). https://doi.org/10.1016/S0142-9418(03)00049-7
  33. M. H. Abou_Taleb, Thermal and Spectroscopic Studies of Poly(N-vinylpyrrolidone)/Poly(vinyl alcohol) Blend Films, J. Appl. Polym. Sci., 14, 1202-1207 (2009).
  34. N. Nishioka, S. Hamabe, T. Murakami, and T. Kitagawa, Thermal Decomposition Behavior of Miscible Cellulose/Synthetic Polymer Blends, J. Appl. Polym. Sci., 69, 2133-2137 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980912)69:11<2133::AID-APP4>3.0.CO;2-H
  35. A. B. Seabra and M. G. de Oliveira, Poly(vinyl alcohol) and poly(vinyl pyrrolidone) blended films for local nitric oxide release, Biomaterials, 25, 3773-3782 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.035