DOI QR코드

DOI QR Code

Combustive Properties of Specimens Treated with Methylenepiperazinomethyl-Bis-Phosphonic Acid (Mn+)s

메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리된 시험편의 연소성

  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2015.06.09
  • Accepted : 2015.07.06
  • Published : 2015.08.10

Abstract

This study was performed to test the combustive properties of pinus rigida specimens treated with methylpiperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$)s and methylpiperazinomethyl-bis-phosphonic acid (PIPEABP). Each pinus rigida plates were painted three times with 15 wt% $PIPEABPM^{n+}s$ or PIPEABP solutions at the room temperature. After drying specimens treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It was indicated that the speed to peak mass loss rate ($MLR_{peak}$), (0.104~0.121) g/s for specimens treated with $PIPEABPM^{n+}s$ was lower than that of PIPEABP plate. In addition, the total smoke release rate (TSRR), $(224.4{\sim}484.0)m^2/m^2$ for $PIPEABPM^{n+}s$ treated specimens except specimen treated with PIPEABPAl3+ and $CO_{mean}$ production (0.0537~0.0628) kg/kg was smaller than that of PIPEABP plate. In particular, for the specimens treated with $PIPEABPM^{n+}$ by reducing the smoke production rate, the second-smoke production rate (2nd-SPR) $(0.0117{\sim}0.0146)m^2/s$ was lower than that of PIPEABP plate. It can thus be concluded that combustion-retardation properties of the treated $PIPEABPM^{n+}s$ were partially improved compared to those of the virgin plate.

이 연구에서는 메틸렌피페라지노메틸-비스-포스폰산 금속염($PIPEABPM^{n+}$)과 메틸렌피페라지노메틸-비스-포스폰산(PIPEABP)으로 처리된 리기다 소나무의 연소성을 시험하였다. 15 wt%의 메틸렌피페라지노메틸-비스-포스폰산 금속염과 메틸렌피페라지노메틸-비스-포스폰산 수용액으로 각각 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소성을 시험하였다. 그 결과, 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리한 시험편은 메틸렌피페라지노메틸-비스-포스폰산을 처리한 시험편에 비해 최대질량감소율($MLR_{peak}$)이 (0.104~0.121) g/s으로 낮았다. 그리고 금속염으로 처리한 시험편($PIPEABPM^{n+}$)은 메틸렌피페라지노메틸-비스-포스폰산 알루미늄염($PIPEABPAl^{3+}$)으로 처리한 시험편을 제외하고, 금속염으로 처리하지 않은 시험편(PIPEABP)보다 낮은 총연기발생률(TSRR), $(224.4{\sim}484.0)m^2/m^2$과 낮은 $CO_{mean}$ (0.0537~0.0628) kg/kg 값을 보였다. 특별히 금속염 처리 시험편($PIPEABPM^{n+}$)의 2차 연기발생속도(2nd-SPR)는 $(0.0117{\sim}0.0146)m^2/s$으로서 금속염으로 처리하지 않은 시험편(PIPEABP)에 비하여 낮았다. 따라서 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리한 시험편은 처리하지 않은 시험편과 비교하여 연소 억제성을 부분적으로 향상시켰다.

Keywords

References

  1. P. W. Lee and J. H. Kwon, Effects of the Treated Chemicals on Fire Retardancy of Fire Retardant Treated Particle Boards, Mogjae-Gonghak, 11(5), 16-22 (1983).
  2. T. S. Mcknight, The Hygroscopicity of Wood Treated With Fire-Retarding Compounds, Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
  3. J. C. Middleton, S. M. Dragoner, and F. T. Winters, Jr. An Evaluation of Borates and Other Inorganic Salts as Fire Retardants for Wood Products, Fore. Prod. J., 15(12), 463-467 (1965).
  4. I. S. Goldstein and W. A. Dreher, A. Non-Hygroscopic Fire Retardant Treatment for Wood, Froe. Prod. J., 11(5), 235-237 (1961).
  5. R. Kozlowski and M. Hewig, 1st Int Conf. Progress in Flame Retardancy and Flammability Testing, Pozman, Poland, Institute of Natural Fibres (1995).
  6. R. Stevens, S. E. Daan, R. Bezemer, and A. Kranenbarg, The Strucure-Activity Relationship of Retardant Phosphorus Compounds in Wood, Polym. Degrad. Stab., 91(4), 832-841 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  7. Y. J. Chung, Y. H. Kim, and S. B. Kim, Flame Retardant Properties of Polyurethane Produced by the Addition of Phosphorous Containing Polyurethane Oligomers (II), J. Ind. Eng. 15(6), 888-893 (2009). https://doi.org/10.1016/j.jiec.2009.09.018
  8. Y. J. Chung, Flame Retardancy of Veneers Treated by Ammonium Salts, J. Korean Ind. Eng. Chem., 18(3), 251-255 (2007).
  9. M. L. Hardy, Regulatory Status and Environmental Properties of Brominated Flame Retardants Undergoing Risk Assessment in the EU: DBDPO, OBDPO, PeBDPO and HBCD, Polym. Degrad. Stab., 64(3), 545-556 (1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  10. Y. Tanaka, Epoxy Resin Chemistry and Technology, Marcel Dekker, New York (1988).
  11. V. Babrauskas, New Technology to Reduce Fire Losses and Costs, Eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK. (1986).
  12. M. M. Hirschler, Thermal Decomposition and Chemical Composition, 239, ACS Symposium Series 797 (2001).
  13. ISO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method), Genever (2002).
  14. Korean Patent, Organic Phosphorus-Nitrogen Compounds, Manufacturing Method and Compositions of Flame Retardants Containing Organic Phosphorus-Nitrogen Compounds, No. 10-2011-0034978 (2011).
  15. Y. J. Chung and E. Jin, Synthesis of Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives, J. of Korean Oil Chemist's Soc., 30(1), 1-8 (2013). https://doi.org/10.12925/jkocs.2013.30.1.001
  16. M. H. Park and Y. J. Chung, Combustive Properties of Pinus Risids Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid ($M^{2+}), Fire Sci. Eng., 28(6), 28-34 (2014). https://doi.org/10.7731/KIFSE.2014.28.6.028
  17. E. Jin and Y. J. Chung, Combustion Characteristics of Pinus Rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid ($M^{2+}), Fire Sci. Eng., 27(6), 70-76 (2013). https://doi.org/10.7731/KIFSE.2013.27.6.070
  18. O. Grexa, E. Horvathova, O. Besinova, and P. Lehocky, Falme Retardant Treated Plyood, Polym. Degrad. Stab., 64(3), 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  19. Cischem Com, Flame Retardants, Chischem. Com. CO., Ltd, (2009).
  20. J. C. Kotz, P. M. Treichel, and G. C. Weaver, electron Transfer Reactions, Chemistry & Chemical Reactivity, Sixth Ed., Thomson Learning, Inc., Toronto, Canada (2006).
  21. E. Jin and Y. J. Chung, Combustion Characteristics of Wood Specimens Treated with Methylenepiperazinomethyl-Bis-Phosphonic Acid ($M^{n+})s, Fire Sci. Eng., 28(3), 55-61 (2014). https://doi.org/10.7731/KIFSE.2014.28.3.055
  22. ISO 5660-2, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 2: Smoke Production Rate Heat (Dynamic Measurement), Genever (2002).
  23. V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  24. J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  25. A. P. Mourituz, Z. Mathys, and A. G. Gibson, Heat Release of Polymer Composites in Fire, Composites: Part A, 38(7), 1040-1054 (2005).
  26. M. M. Hirscher, Reduction of smoke formation from and flammability of thermoplastic polymers by metal oxides, Polymer, 25, 405-411 (1984). https://doi.org/10.1016/0032-3861(84)90296-9
  27. J. Zhang, D. D. Jiang, and C. A. Wilkie, Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clay, Polm. Degrad. Stab., 91, 298-304 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.05.006
  28. Y. J. Chung, H. M. Lim, E. Jin, and J. K. Oh, Combustion-retardation properties of low density polyethylene and etylene vinyl acetate mixtures with magnesium hydroxide, Appl. Chem. Eng., 22, 439-443 (2011).
  29. R. S. Berns, Billmeyer and Saltszman's Principles of Color Technology, Wiley Intersciences (2000).
  30. M. J. Spearpoint and G. J. Quintiere, Predicting the Burning of Wood Using an Integral Model, Combustion and Flame, 123, 308-325 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  31. S. Ishihara, Smoke and Toxic Gases Produced During Fire, Wood Resh. Tech. Notes, 16(5), 49-62 (1981).

Cited by

  1. Emission of Carbon Monoxide and Carbon Dioxide Gases during Fire Tests of Specimens Treated with Phosphorus-Nitrogen Additives vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1088
  2. 플라스틱의 연소 시 발생하는 연기 위험성에 관한 연구 vol.33, pp.1, 2015, https://doi.org/10.7731/kifse.2019.33.1.069