DOI QR코드

DOI QR Code

MicroRNAs May Serve as Emerging Molecular Biomarkers for Diagnosis and Prognostic Assessment or as Targets for Therapy in Gastric Cancer

  • Mu, Yong-Ping (Department of Clinical Laboratory Center, The Affiliated People's Hospital of Inner Mongolia Medical University) ;
  • Sun, Wen-Jie (School of Public Health and Tropical Medicine, Tulane University) ;
  • Lu, Chuan-Wen (Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Texas Tech University Health Sciences Center) ;
  • Su, Xiu-Lan (Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University)
  • Published : 2015.07.13

Abstract

Gastric cancer (GC) is one of the most common cancers, with high incidences in East Asia countries. Most GC patients have been reported with low early diagnosis rate and show extremely poor prognosis. Therefore, it is necessary to develop novel and more sensitive biomarkers to improve early diagnosis and therapy in order to provide longer survival and better quality of life for gastric cancer patients. MicroRNAs (miRNAs) play crucial roles in GC development and progression. miRNAs have emerged as a novel molecular biomarker for cancer diagnosis, prognosis and therapy with surprising stability in tissues, serum or other body fluids. This review summarizes major advances in our current knowledge about potential miRNA biomarkers for GC that have been reported in the past two years.

Keywords

References

  1. Chang L, Guo F, Wang Y, et al (2014). MicroRNA-200c regulates the sensitivity of chemotherapy of gastric cancer SGC7901/DDP cells by directly targeting RhoE. Pathol Oncol Res, 20, 93-8. https://doi.org/10.1007/s12253-013-9664-7
  2. Chen L, Lu MH, Zhang D, et al (2014a). miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis, 5, 1034. https://doi.org/10.1038/cddis.2013.553
  3. Chen Q, Ge X, Zhang Y, et al (2014b). Plasma miR-122 and miR-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. Oncol Rep, 31, 1863-70. https://doi.org/10.3892/or.2014.3004
  4. Chen X, Ba Y, Ma L, et al (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18, 997-1006. https://doi.org/10.1038/cr.2008.282
  5. Crew KD, Neugut AI (2006). Epidemiology of gastric cancer. World J Gastroenterol, 12, 354-62. https://doi.org/10.3748/wjg.v12.i3.354
  6. Du Y, Wang D, Luo L, et al (2014). miR-129-1-3p Promote BGC-823 Cell Proliferation by Targeting PDCD2. Anat Rec (Hoboken), 297, 2273-9. https://doi.org/10.1002/ar.23003
  7. Duan JH, Fang L (2014). MicroRNA-92 promotes gastric cancer cell proliferation and invasion through targeting FXR. Tumour Biol, 35, 11013-9. https://doi.org/10.1007/s13277-014-2342-x
  8. Duan Y, Hu L, Liu B, et al (2014). Tumor suppressor miR-24 restrains gastric cancer progression by downregulating RegIV. Mol Cancer, 13, 127. https://doi.org/10.1186/1476-4598-13-127
  9. Ekimler S, Sahin K (2014). Computational Methods for MicroRNA Target Prediction. Genes (Basel), 5, 671-83. https://doi.org/10.3390/genes5030671
  10. El-Zimaity HM, Ota H, Graham DY, et al (2002). Patterns of gastric atrophy in intestinal type gastric carcinoma. Cancer, 94, 1428-36. https://doi.org/10.1002/cncr.10375
  11. Fesler A, Zhai H, Ju J (2014). miR-129 as a novel therapeutic target and biomarker in gastrointestinal cancer. Onco Targets Ther, 7, 1481-5.
  12. Fu Z, Qian F, Yang X, et al (2014). Circulating miR-222 in plasma and its potential diagnostic and prognostic value in gastric cancer. Med Oncol, 31, 164. https://doi.org/10.1007/s12032-014-0164-8
  13. Guo B, Li J, Liu L, et al (2013). Dysregulation of miRNAs and their potential as biomarkers for the diagnosis of gastric cancer. Biomed Rep, 1, 907-12. https://doi.org/10.3892/br.2013.175
  14. Han TS, Hur K (2015). MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1.Gut, 64, 203-14. https://doi.org/10.1136/gutjnl-2013-306640
  15. Hayes J, Peruzzi PP, Lawler S (2014). MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med, 20, 460-9. https://doi.org/10.1016/j.molmed.2014.06.005
  16. Hibino S, Saito Y, Muramatsu T, et al (2014). Inhibitors of enhancer of zeste homolog 2 (EZH2) activate tumor-suppressor microRNAs in human cancer cells. Oncogenesis, 3, 104. https://doi.org/10.1038/oncsis.2014.17
  17. Hu CB, Li QL, Hu JF, et al (2014a). miR-124 Inhibits Growth and Invasion of Gastric Cancer by Targeting ROCK1. Asian Pac J Cancer Prev, 15, 6543-6. https://doi.org/10.7314/APJCP.2014.15.16.6543
  18. Hu Q, Peng J, Liu W, et al (2014b). Lin28B is a novel prognostic marker in gastric adenocarcinoma. Int J Clin Exp Pathol, 7, 5083-92.
  19. Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
  20. Keller A, Leidinger P, Gislefoss R, et al (2011). Stable serum miRNA profiles as potential tool for non-invasive lung cancer diagnosis. RNA Biol, 8, 506-16. https://doi.org/10.4161/rna.8.3.14994
  21. Kiga K, Mimuro H, Suzuki M, et al (2014). Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat Commun, 5, 4497. https://doi.org/10.1038/ncomms5497
  22. Komatsu S, Ichikawa D, Tsujiura M, et al (2013). Prognostic impact of circulating miR-21 in the plasma of patients with gastric carcinoma. Anticancer Res, 33, 271-6.
  23. Lasser C (2013). Identification and analysis of circulating exosomal microRNA in human body fluids. Methods Mol Biol, 1024, 109-28. https://doi.org/10.1007/978-1-62703-453-1_9
  24. Lee Y, Ahn C, Han J, et al (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415-9. https://doi.org/10.1038/nature01957
  25. Li L, Sheng Y, Lv L, et al (2013). The association between two microRNA variants (miR-499, miR-149) and gastrointestinal cancer risk: a meta-analysis. PLoS One, 8, 81967. https://doi.org/10.1371/journal.pone.0081967
  26. Li L, Zhou L, Li Y, et al (2014a). MicroRNA-21 stimulates gastric cancer growth and invasion by inhibiting the tumor suppressor effects of programmed cell death protein 4 and phosphatase and tensin homolog. J buon, 19, 228-36.
  27. Li LP, Wu WJ, Sun DY, et al (2014b). miR-449a and CDK6 in gastric carcinoma. Oncol Lett, 8, 1533-8. https://doi.org/10.3892/ol.2014.2370
  28. Li R, Yuan W, Mei W, et al (2014c). MicroRNA 520d-3p inhibits gastric cancer cell proliferation, migration, and invasion by downregulating EphA2 expression. Mol Cell Biochem, 396, 295-305. https://doi.org/10.1007/s11010-014-2164-6
  29. Li X, Wang F, Qi Y (2014d). MiR-126 inhibits the invasion of gastric cancer cell in part by targeting Crk. Eur Rev Med Pharmacol Sci, 18, 2031-7.
  30. Liu D, Hu X, Zhou H, et al (2014a). Identification of Aberrantly Expressed miRNAs in Gastric Cancer. Gastroenterol Res Pract, 2014, 473817.
  31. Liu LY, Wang W, Zhao LY, et al (2014b). Mir-126 inhibits growth of SGC-7901 cells by synergistically targeting the oncogenes PI3KR2 and Crk, and the tumor suppressor PLK2. Int J Oncol, 45, 1257-65. https://doi.org/10.3892/ijo.2014.2516
  32. Ma GJ, Gu RM, Zhu M, et al (2013a). Plasma post-operative miR-21 expression in the prognosis of gastric cancers. Asian Pac J Cancer Prev, 14, 7551-4. https://doi.org/10.7314/APJCP.2013.14.12.7551
  33. Ma Y, Wang X, Jin H (2013b). Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection. Int J Mol Sci, 14, 10307-31. https://doi.org/10.3390/ijms140510307
  34. Miao L, Liu K, Xie M, et al (2014). miR-375 inhibits Helicobacter pylori-induced gastric carcinogenesis by blocking JAK2-STAT3 signaling. Cancer Immunol Immunother, 63, 699-711. https://doi.org/10.1007/s00262-014-1550-y
  35. Mu YP, Su XL (2012). Polymorphism in pre-miR-30c contributes to gastric cancer risk in a Chinese population. Med Oncol, 29, 1723-32. https://doi.org/10.1007/s12032-011-0115-6
  36. Mu YP, Tang S, Sun WJ, et al (2014). Association of miR-193b Down-regulation and miR-196a up-Regulation with Clinicopathological Features and Prognosis in Gastric Cancer. Asian Pac J Cancer Prev, 15, 8893-900. https://doi.org/10.7314/APJCP.2014.15.20.8893
  37. Naito Y, Yasuno K, Tagawa H, et al (2014). MicroRNA-145 is a potential prognostic factor of scirrhous type gastric cancer. Oncol Rep, 32, 1720-6. https://doi.org/10.3892/or.2014.3333
  38. Omura T, Shimada Y, Nagata T, et al (2014). Relapse-associated microRNA in gastric cancer patients after S-1 adjuvant chemotherapy. Oncol Rep, 31, 613-8. https://doi.org/10.3892/or.2013.2900
  39. Seok JK, Lee SH, Kim MJ, et al (2014). MicroRNA-382 induced by HIF-1alpha is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res, 42, 8062-72. https://doi.org/10.1093/nar/gku515
  40. Shen J, Niu W, Zhou M, et al (2014a). MicroRNA-410 Suppresses Migration and Invasion by Targeting MDM2 in Gastric Cancer. PLoS One, 9, 104510. https://doi.org/10.1371/journal.pone.0104510
  41. Shen Q, Yao Q, Sun J, et al (2014b). Downregulation of histone deacetylase 1 by microRNA-520h contributes to the chemotherapeutic effect of doxorubicin. FEBS Lett, 588, 184-91. https://doi.org/10.1016/j.febslet.2013.11.034
  42. Shin JY, Kim YI, Cho SJ, et al (2014). MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer. PLoS One, 9, 85205. https://doi.org/10.1371/journal.pone.0085205
  43. Song F, Yang D, Liu B, et al (2014). Integrated microRNA network analyses identify a poor-prognosis subtype of gastric cancer characterized by the miR-200 family. Clin Cancer Res, 20, 878-89. https://doi.org/10.1158/1078-0432.CCR-13-1844
  44. Song MY, Su HJ, Zhang L, et al (2013). Genetic polymorphisms of miR-146a and miR-27a, H. pylori infection, and risk of gastric lesions in a Chinese population. PLoS One, 8, 61250. https://doi.org/10.1371/journal.pone.0061250
  45. Sun S, Sun P, Wang C, et al (2014). Downregulation of microRNA-155 accelerates cell growth and invasion by targeting c-myc in human gastric carcinoma cells. Oncol Rep, 32, 951-6. https://doi.org/10.3892/or.2014.3288
  46. Sun Y, Zhang K, Fan G, et al (2012). Identification of circulating microRNAs as biomarkers in cancers: what have we got? Clin Chem Lab Med, 50, 2121-6.
  47. Tahara T, Okubo M, Shibata T, et al (2014). Association Between Common Genetic Variants in Pre-MicroRNAs and Prognosis of Advanced Gastric Cancer Treated with Chemotherapy. Anticancer Res, 34, 5199-204.
  48. Tan Z, Jiang H, Wu Y, et al (2014). miR-185 is an independent prognosis factor and suppresses tumor metastasis in gastric cancer. Mol Cell Biochem, 386, 223-31. https://doi.org/10.1007/s11010-013-1860-y
  49. Tian SB, Yu JC, Kang WM, et al (2014). [MicroRNA and gastric cancer]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 36, 214-7.
  50. Tsai MM, Wang CS, Tsai CY, et al (2014). MicroRNA-196a/-196b promote cell metastasis via negative regulation of radixin in human gastric cancer. Cancer Lett, 351, 222-31. https://doi.org/10.1016/j.canlet.2014.06.004
  51. Tsujiura M, Komatsu S, Ichikawa D, et al (2014). Circulating miR-18a in plasma contributes to cancer detection and monitoring in patients with gastric cancer. Gastric Cancer.
  52. Tufekci KU, Meuwissen RL, Genc S (2014). The role of microRNAs in biological processes. Methods Mol Biol, 1107, 15-31. https://doi.org/10.1007/978-1-62703-748-8_2
  53. Wang T, Ge G, Ding Y, et al (2014a). MiR-503 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R and BCL2. Chin Med J (Engl), 127, 2357-62.
  54. Wang W, Li F, Zhang Y, et al (2013). Reduced expression of miR-22 in gastric cancer is related to clinicopathologic characteristics or patient prognosis. Diagn Pathol, 8, 102. https://doi.org/10.1186/1746-1596-8-102
  55. Wang Z, Cai Q, Jiang Z, et al (2014b). Prognostic Role of MicroRNA-21 in Gastric Cancer: a Meta-Analysis. Med Sci Monit, 20, 1668-74. https://doi.org/10.12659/MSM.892096
  56. Wu CW, Hsiung CA, Lo SS, et al (2006). Nodal dissection for patients with gastric cancer: a randomised controlled trial. Lancet Oncol, 7, 309-15. https://doi.org/10.1016/S1470-2045(06)70623-4
  57. Wu JH, Yao YL, Gu T, et al (2014). MiR-421 regulates apoptosis of BGC-823 gastric cancer cells by targeting caspase-3. Asian Pac J Cancer Prev, 15, 5463-8. https://doi.org/10.7314/APJCP.2014.15.13.5463
  58. Xia JT, Chen LZ, Jian WH, et al (2014). MicroRNA-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of NF-kappaB signaling. J Transl Med, 12, 33. https://doi.org/10.1186/1479-5876-12-33
  59. Xu Q, Dong Q, He C, et al (2014a). A new polymorphism biomarker rs629367 associated with increased risk and poor survival of gastric cancer in chinese by up-regulated miRNA-let-7a expression. PLoS One, 9, 95249. https://doi.org/10.1371/journal.pone.0095249
  60. Xu Y, Huang Z, Liu Y (2014b). Reduced miR-125a-5p expression is associated with gastric carcinogenesis through the targeting of E2F3. Mol Med Rep, 10, 2601-8. https://doi.org/10.3892/mmr.2014.2567
  61. Xu Y, Jin J, Liu Y, et al (2014c). Snail-regulated MiR-375 inhibits migration and invasion of gastric cancer cells by targeting JAK2. PLoS One, 9, 99516. https://doi.org/10.1371/journal.pone.0099516
  62. Xu YJ, Fan Y (2014). MiR-215/192 participates in gastric cancer progression. Clin Transl Oncol, 17, 34-40.
  63. Yan W, Wang S, Sun Z, et al (2014). Identification of microRNAs as potential biomarker for gastric cancer by system biological analysis. Biomed Res Int, 2014, 901428.
  64. Yang M, Shan X, Zhou X, et al (2014a). miR-1271 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R, IRS1, mTOR, and BCL2. Anticancer Agents Med Chem, 14, 884-91. https://doi.org/10.2174/1871520614666140528161318
  65. Yang O, Huang J, Lin S (2014b). Regulatory effects of miRNA on gastric cancer cells. Oncol Lett, 8, 651-6. https://doi.org/10.3892/ol.2014.2232
  66. Yang Q, Jie Z, Ye S, et al (2014c). Genetic variations in miR-27a gene decrease mature miR-27a level and reduce gastric cancer susceptibility. Oncogene, 33, 193-202. https://doi.org/10.1038/onc.2012.569
  67. Yang Q, Zhang C, Huang B, et al (2013). Downregulation of microRNA-206 is a potent prognostic marker for patients with gastric cancer. Eur J Gastroenterol Hepatol, 25, 953-7. https://doi.org/10.1097/MEG.0b013e32835ed691
  68. Zhang R, Wang W, Li F, et al (2014a). MicroRNA-106b-25 expressions in tumor tissues and plasma of patients with gastric cancers. Med Oncol, 31, 243. https://doi.org/10.1007/s12032-014-0243-x
  69. Zhang XL, Shi HJ, Wang JP, et al (2014b). MicroRNA-218 is upregulated in gastric cancer after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy and increases chemosensitivity to cisplatin. World J Gastroenterol, 20, 11347-55. https://doi.org/10.3748/wjg.v20.i32.11347
  70. Zheng G, Xiong Y, Xu W, et al (2014). A two-microRNA signature as a potential biomarker for early gastric cancer. Oncol Lett, 7, 679-84. https://doi.org/10.3892/ol.2014.1797
  71. Zheng L, Pu J, Qi T, et al (2013). miRNA-145 targets v-ets erythroblastosis virus E26 oncogene homolog 1 to suppress the invasion, metastasis, and angiogenesis of gastric cancer cells. Mol Cancer Res, 11, 182-93. https://doi.org/10.1158/1541-7786.MCR-12-0534
  72. Zhou X, Li L, Su J, et al (2014). Decreased miR-204 in H. pylori-associated gastric cancer promotes cancer cell proliferation and invasion by targeting SOX4. Scientifica (Cairo), 9, 101457.
  73. Zhu ED, Li N, Li BS, et al (2014a). miR-30b, Down-Regulated in Gastric Cancer, Promotes Apoptosis and Suppresses Tumor Growth by Targeting Plasminogen Activator Inhibitor-1. PLoS One, 9, 106049. https://doi.org/10.1371/journal.pone.0106049
  74. Zhu M, Zhang N, He S (2014b). Similarly up-regulated microRNA-106a in matched formalin-fixed paraffin-embedded and fresh frozen samples and the dynamic changes during gastric carcinogenesis and development. Pathol Res Pract, 210, 909-15. https://doi.org/10.1016/j.prp.2014.07.008

Cited by

  1. Evaluation of microRNA-205 expression as a potential triage marker for patients with low-grade squamous intraepithelial lesions vol.13, pp.5, 2017, https://doi.org/10.3892/ol.2017.5909
  2. downregulation is associated with tumor grade and viral infections in gastric adenocarcinoma vol.234, pp.3, 2018, https://doi.org/10.1002/jcp.27106