DOI QR코드

DOI QR Code

Fabrication of YAG : Er3+ powders for the single crystal growth according to the synthetic temperature and flux concentration

다양한 온도조건과 flux 첨가량에 따른 단결정 성장용 YAG : Er3+ 분말 제조

  • Park, Cheol Woo (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Kang, Suk Hyun (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Park, Jae Hwa (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyun Mi (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Choi, Jae Sang (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Kang, Hyo Sang (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Shim, Kwang Bo (Division of Advanced Materials Science and Engineering, Hanyang University)
  • Received : 2015.07.30
  • Accepted : 2015.08.17
  • Published : 2015.08.31

Abstract

In this study, using solid-state and flux, $Y_3Al_5O_{12}:Er^{3+}\;(YAG:Er^{3+})$ powders were successfully synthesized at low temperatures. To analyze the crystallinity of powders according to the synthesis or non-synthesis of powders and powder calcination temperatures, X-ray diffraction (XRD) was measured. In the case of pure YAG, when YAG was analyzed using the general solid-phase method, it was calcined for 12 hours at $1400^{\circ}C$ and pure YAG phase could be obtained. But when $BaF_2$ was added to YAG, YAG was synthesized at lower temperature (1000^{\circ}C$). It was thus found that the synthesis temperature could be lowered by about $400^{\circ}C$. Also, when BaF2 with an optimal concentration was added to $YAG:Er^{3+}$, the particle shape and size according to synthesis temperatures were surveyed, and corresponding luminous intensity was discussed.

본 연구에서는 고상법 및 flux를 이용하여 $Y_3Al_5O_{12}:Er^{3+}\;(YAG:Er^{3+})$ 분말을 저온에서 성공적으로 합성하였다. 분말의 합성 여부와 분말 하소 시 온도에 따른 결정성을 분석하기 위하여 X-ray diffraction(XRD)를 측정하였다. 순수한 YAG는 일반적인 고상법으로 합성할 경우, $1400^{\circ}C$에서 12시간 동안 하소하여 순수한 YAG 상을 얻을 수 있었고, 반면에 $BaF_2$를 첨가한 결과는 상대적으로 낮은 온도($1000^{\circ}C$)에서 합성되었다. 즉, 합성온도를 약 $400^{\circ}C$ 가량 낮출 수 있는 것으로 나타났다. 또한, $BaF_2$의 최적의 농도를 찾아 첨가 후, 열처리 온도에 따라 $BaF_2$로 인한 입자의 형태 및 크기를 조사하였으며 그에 따른 발광강도에 대하여 논의하였다.

Keywords

References

  1. K. Zhang, H.Z. Liu, Y.T. Wu and W.B. Hu, "Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant", J. Alloys Compd. 453 (2008) 265. https://doi.org/10.1016/j.jallcom.2006.11.101
  2. V. Lupei, "Comparative spectroscopic investigation of rare earth-doped oxide transparent ceramics and single crystals", J. Alloys Compd. 451 (2008) 52. https://doi.org/10.1016/j.jallcom.2007.04.130
  3. S.H. Lee, H.T. Kim, S.I. Bae and S.J. Jung, "Growth of Nd : YAG single crystal by czochralski method and characteristics of laser generation", Korean J. Opt. Photon. 9 (1998) 3.
  4. J.G. Li, T. Ikegami, J.H. Lee, T. Mori and Y. Yajima, "Reactive yttrium aluminate garnet powder via coprecipitation using ammonium hydrogen carbonate as the precipitant", J. Mater. Res. 15 (2000) 1864. https://doi.org/10.1557/JMR.2000.0269
  5. Y. Sang, H. Liu, Y. Lv, J. Wang, T. Chen, D. Liu, X. Zhang, H. Qin, X. Wang and R.I. Boughton, "Yttrium aluminum garnet nanoparticles synthesized by nitrate decomposition and their low temperature densification behavior", J. Alloys Compd. 490 (2010) 459. https://doi.org/10.1016/j.jallcom.2009.10.044
  6. X. Zhang, H. Liu, W. He, J.Y. Wang, X. Li and R.I. Boughton, "Novel synthesis of YAG by solvothermal method", J. Cryst. Growth 275 (2005) 1913. https://doi.org/10.1016/j.jcrysgro.2004.11.274
  7. Z. Wu, X. Zhang, W. He, Y. Du, N. Jia, P. Liu and F. Bu, "Solvothermal synthesis of spherical YAG powders via different precipitants", J. Alloys Compd. 472 (2009) 576. https://doi.org/10.1016/j.jallcom.2008.05.031
  8. Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri and K. Arai, "Continuous production of phosphor YAG : Tb nanoparticles by hydrothermal synthesis in supercritical water", Mater. Res. Bull. 38 (2003) 1257. https://doi.org/10.1016/S0025-5408(03)00088-6
  9. H. Yang, L. Yuan, G. Zhu, A. Yu and H. Xu, "Luminescent properties of YAG : $Ce^{3+}$ phosphor powders prepared by hydrothermal-homogeneous precipitation method", Mater. Lett. 63 (2009) 2271. https://doi.org/10.1016/j.matlet.2009.07.012
  10. J.H. In, H.C. Lee, M.J. Yoon, K.K. Lee, J.W. Lee and C.H. Lee, "Synthesis of nano-sized YAG : $Eu^{3+}$ phosphor in continuous supercritical water system", J. Supercrit. Fluids 40 (2007) 389. https://doi.org/10.1016/j.supflu.2006.08.006
  11. M.J. Yoon, J.H. In, H.C. Lee and C.H. Lee, "Comparison of YAG: Eu phosphor synthesized by supercritical water and solid-state methods in a batch reactor", Korean J. Chem. Eng. 23 (2006) 842. https://doi.org/10.1007/BF02705938
  12. Q.X. Zheng, B. Li, H.D. Zhang, J.J. Zheng, M.H. Jiang and X.T. Tao, "Fabrication of YAG mono-dispersed particles with a novel combination method employing supercritical water process", J. Supercrit. Fluids 50 (2009) 77. https://doi.org/10.1016/j.supflu.2009.04.002
  13. Y. Li, J. Zhang, Q. Xiao and R. Zeng, "Synthesis of ultrafine spherical YAG : $Eu^{3+}$ phosphors by MOCVD", Mater. Lett. 62 (2008) 3787. https://doi.org/10.1016/j.matlet.2008.03.061
  14. X. Li and W. Wang, "Preparation of uniformly dispersed YAG ultrafine powders by co-precipitation method with SDS treatment", Powder Technol. 196 (2009) 26. https://doi.org/10.1016/j.powtec.2009.06.013
  15. L. Mancic, K. Marinkovic, B.A. Marinkovic, M. Dramicanin and O. Milosevic, "YAG : $Ce^{3+}$ nanostructured particles obtained via spray pyrolysis of polymeric precursor solution", J. Eur. Ceram. Soc. 30 (2010) 577. https://doi.org/10.1016/j.jeurceramsoc.2009.05.037
  16. S.H. Lee, D.S. Jung, J.M. Han, H.Y. Koo and Y.C. Kang, "Fine-sized $Y_3Al_5O_{12}$ : Ce phosphor powders prepared by spray pyrolysis from the spray solution with barium fluoride flux", J. Alloys Compd. 477 (2009) 776. https://doi.org/10.1016/j.jallcom.2008.10.154
  17. M. Suareza, A. Fernandez, J.L. Menendez and R. Torrecillas, "Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency", J. Alloys Compd. 493 (2010) 391. https://doi.org/10.1016/j.jallcom.2009.12.108
  18. M.L. Saladino, G. Nasillo, D.C. Martino and E. Caponetti, "Synthesis of Nd:YAG nanopowder using the citrate method with microwave irradiation", J. Alloys Compd. 491 (2010) 737. https://doi.org/10.1016/j.jallcom.2009.11.054
  19. L. Yang, T. Lu, H. Xu and N. Wei, "Synthesis of YAG powder by the modified sol-gel combustion method", J. Alloys Compd. 484 (2009) 449. https://doi.org/10.1016/j.jallcom.2009.04.123
  20. C.W. Won, H.H. Nersisyan, H.I. Won, J.H. Lee and K.H. Lee, "Efficient solid-state route for the preparation of spherical YAG : Ce phosphor particles", J. Alloys Compd. 509 (2011) 2621. https://doi.org/10.1016/j.jallcom.2010.11.143
  21. S.M. Park, J.S. Yoo and J.D. Lee, "Synthesis of YAG as host material for low-voltage phosphor", Theories and Applications of Chem. Eng. 2 (1996) 2567.
  22. Y.H. Kim and S.J. Lee, "Synthesis of YAG : $Ce^{3+}$ phosphor powders by polymer solution route and alumina seed application", J. Kor. Powd. Met. Inst. 20 (2013) 1. https://doi.org/10.4150/KPMI.2013.20.1.001
  23. W.T. Yoo, G.Y. Hong and I.W. Park, "The effect of heattreatment on YAG phosphors for LEDs applications", Theories and Applications of Chem. Eng. 8 (2002) 2.
  24. K. Ohno and T. Abe, "The synthesis and particle growth mechanism of bright green phosphor", J. Electrochem. Soc. 141 (1994) 5.
  25. M. Nakielska, J. Sarnecki, M. Malinowski and R. Piramidowicz, "Up-conversion and fluorescence quenching processes studies in highly $Pr^{3+}$-doped YAG waveguides", J. Alloys Compd. 451 (2008) 190. https://doi.org/10.1016/j.jallcom.2007.04.174
  26. J. Zhou, W.X. Zhang, J. Li, B.X. Jiang, W.B. Liu and Y.B. Pan, "Upconversion luminescence of high content Er-doped YAG transparent ceramics", Ceramics International 36 (2010) 193. https://doi.org/10.1016/j.ceramint.2009.07.018
  27. D. Matsuura, "Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped $Y_2O_3$ nanocrystals", Appl. Phys. Lett. 81 (2002) 4526. https://doi.org/10.1063/1.1527976