DOI QR코드

DOI QR Code

Magnetic Resonance Imaging as a Biomarker for Duchenne Muscular Dystrophy

  • Lim, Woo-taek (Dept. of Physical Therapy, College of Health and Welfare, Woosong University, Dept. of Sports Rehabilitation, College of Health and Welfare, Woosong University)
  • Received : 2015.07.31
  • Accepted : 2015.09.02
  • Published : 2015.09.17

Abstract

Muscular dystrophy is a hereditary musculoskeletal disorder caused by a mutation in the dystrophin gene. Duchenne muscular dystrophy (DMD) is one of the most common, and progresses relatively faster than other muscular dystrophies. It is characterized by progressive myofiber degeneration, muscle weakness and ultimately ambulatory loss. Since it is an X-linked recessive inheritance, DMD is mostly expressed in males and rarely expressed or less severe in females. The most effective measurement tool for DMD is magnetic resonance imaging (MRI), which allows non-invasive examination of longitudinal measurement. It can detect progressive decline of skeletal muscle size by measuring a maximal cross-sectional area of skeletal muscle. Additionally, other techniques in MRI, like $T_2$-weighted imaging, assess muscle damage, including inflammation, by detecting changes in $T_2$ relaxation time. Current MRI techniques even allow quantification of metabolic differences between affected and non-affected muscles in DMD. There is no current cure, but physical therapist can improve their quality of life by maintaining muscle strength and function, especially if treatment (and other forms of medical intervention) begins in the early stages of the disease.

Keywords

References

  1. Aartsma-Rus A, Van Deutekom JC, Fokkema IF, et al. Entries in the leiden duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve. 2006;34(2): 135-144. https://doi.org/10.1002/mus.20586
  2. Akima H, Lott D, Senesac C, et al. Relationships of thigh muscle contractile and non-contractile tissue with function, strength, and age in boys with duchenne muscular dystrophy. Neuromuscul Disord. 2012;22(1):16-25. http://dx.doi.org/10.1016/j.nmd.2011.06.750
  3. Allen DG, Whitehead NP. Duchenne muscular dystrophy--what causes the increased membrane permeability in skeletal muscle? Int J Biochem Cell Biol. 2011;43(3):290-294. http://dx.doi.org/10.1016/j.biocel.2010.11.005
  4. Arpan I, Forbes SC, Lott DJ, et al. $T_2$ mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: A cross-sectional study of lower leg muscles in 5-15-year-old boys with duchenne muscular dystrophy. NMR Biomed. 2013;26(3): 320-328. http://dx.doi.org/10.1002/nbm.2851
  5. Beltran E, Shelton GD, Guo LT, et al. Dystrophindeficient muscular dystrophy in a norfolk terrier. J Small Anim Pract. 2015;56(5):351-354. http://dx.doi.org/10.1111/jsap.12292
  6. Brooke MH, Fenichel GM, Griggs RC, et al. Duchenne muscular dystrophy: Patterns of clinical progression and effects of supportive therapy. Neurology. 1989; 39(4):475-481. https://doi.org/10.1212/WNL.39.4.475
  7. Brussee V, Tardif F, Tremblay JP. Muscle fibers of mdx mice are more vulnerable to exercise than those of normal mice. Neuromuscul Disord. 1997; 7(8):487-492. https://doi.org/10.1016/S0960-8966(97)00115-6
  8. Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of duchenne muscular dystrophy, part 1: Diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9(1):77-93. https://doi.org/10.1016/S1474-4422(09)70271-6
  9. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94(3):630-638. https://doi.org/10.1103/PhysRev.94.630
  10. Dalkilic I, Kunkel LM. Muscular dystrophies: Genes to pathogenesis. Curr Opin Genet Dev. 2003;13 (3):231-238. https://doi.org/10.1016/S0959-437X(03)00048-0
  11. Deconinck N, Dan B. Pathophysiology of duchenne muscular dystrophy: Current hypotheses. Pediatr Neurol. 2007;36(1):1-7. https://doi.org/10.1016/j.pediatrneurol.2006.09.016
  12. Desguerre I, Christov C, Mayer M, et al. Clinical heterogeneity of duchenne muscular dystrophy (DMD): Definition of sub-phenotypes and predictive criteria by long-term follow-up. PLoS One. 2009;4(2):e4347. http://dx.doi.org/10.1371/journal.pone.0004347
  13. Emery AE. Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul Disord. 1991;1(1):19-29. https://doi.org/10.1016/0960-8966(91)90039-U
  14. Emery AE. Muscular dystrophy into the new millennium. Neuromuscul Disord. 2002a;12(4): 343-349. https://doi.org/10.1016/S0960-8966(01)00303-0
  15. Emery AE. The muscular dystrophies. Lancet. 2002b; 359(9307):687-695. https://doi.org/10.1016/S0140-6736(02)07815-7
  16. Felber S, Skladal D, Wyss M, et al. Oral creatine supplementation in duchenne muscular dystrophy: A clinical and 31P magnetic resonance spectroscopy study. Neurol Res. 2000;22(2): 145-150. https://doi.org/10.1080/01616412.2000.11741051
  17. Fleckenstein JL, Bertocci LA, Nunnally RL, et al. 1989 ARRS executive council award. Exercise-enhanced MR imaging of variations in forearm muscle anatomy and use: Importance in MR spectroscopy. AJR Am J Roentgenol. 1989;153(4): 693-698. https://doi.org/10.2214/ajr.153.4.693
  18. Fokkema IF, den Dunnen JT, Taschner PE. LOVD: Easy creation of a locus-specific sequence variation database using an "LSDB-in-a-box" approach. Hum Mutat. 2005;26(2):63-68. https://doi.org/10.1002/humu.20201
  19. Forbes SC, Willcocks RJ, Triplett WT, et al. Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with duchenne muscular dystrophy: A multicenter cross sectional study. PLoS One. 2014; 9(9):e106435. http://dx.doi.org/10.1371/journal.pone.0106435
  20. Fraser LK, Childs AM, Miller M, et al. A cohort study of children and young people with progressive neuromuscular disorders: Clinical and demographic profiles and changing patterns of referral for palliative care. Palliat Med. 2012; 26(7):924-929. https://doi.org/10.1177/0269216311419989
  21. Garrood P, Hollingsworth KG, Eagle M, et al. MR imaging in duchenne muscular dystrophy: Quantification of $T_1$-weighted signal, contrast uptake, and the effects of exercise. J Magn Reson Imaging. 2009;30(5):1130-1138. http://dx.doi.org/10.1002/jmri.21941
  22. Goodpaster BH, Kelley DE, Thaete FL, et al. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol (1985). 2000;89(1): 104-110. https://doi.org/10.1152/jappl.2000.89.1.104
  23. Goodpaster BH, Stenger VA, Boada F, et al. Skeletal muscle lipid concentration quantified by magnetic resonance imaging. Am J Clin Nutr. 2004; 79(5):748-754. https://doi.org/10.1093/ajcn/79.5.748
  24. Grindrod S, Tofts P, Edwards R. Investigation of human skeletal muscle structure and composition by x-ray computerised tomography. Eur J Clin Invest. 1983;13(6):465-468. https://doi.org/10.1111/j.1365-2362.1983.tb00130.x
  25. Heckmatt JZ, Dubowitz V. Detecting the duchenne carrier by ultrasound and computerized tomography. Lancet. 1983;2(8363):1364.
  26. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992;355(6362):696-702. https://doi.org/10.1038/355696a0
  27. Jones DA, Round JM, Edwards RH, et al. Size and composition of the calf and quadriceps muscles in duchenne muscular dystrophy. A tomographic and histochemical study. J Neurol Sci. 1983; 60(2):307-322. https://doi.org/10.1016/0022-510X(83)90071-0
  28. Kim HK, Laor T, Horn PS, et al. T2 mapping in duchenne muscular dystrophy: Distribution of disease activity and correlation with clinical assessments. Radiology. 2010;255(3):899-908. http://dx.doi.org/10.1148/radiol.10091547
  29. Lamminen AE. Magnetic resonance imaging of primary skeletal muscle diseases: Patterns of distribution and severity of involvement. Br J Radiol. 1990;63(756):946-950. https://doi.org/10.1259/0007-1285-63-756-946
  30. Liu M, Chino N, Ishihara T. Muscle damage progression in duchenne muscular dystrophy evaluated by a new quantitative computed tomography method. Arch Phys Med Rehabil. 1993; 74(5):507-514. https://doi.org/10.1016/0003-9993(93)90115-Q
  31. Lott DJ, Forbes SC, Mathur S, et al. Assessment of intramuscular lipid and metabolites of the lower leg using magnetic resonance spectroscopy in boys with duchenne muscular dystrophy. Neuromuscul Disord. 2014;24(7):574-582. http://dx.doi.org/10.1016/j.nmd.2014.03.013
  32. Lovering RM, Brooks SV. Eccentric exercise in aging and diseased skeletal muscle: Good or bad? J Appl Physiol (1985). 2014;116(11):1439-1445. http://dx.doi.org/10.1152/japplphysiol.00174
  33. Lovering RM, Porter NC, Bloch RJ. The muscular dystrophies: From genes to therapies. Phys Ther. 2005;85(12):1372-1388.
  34. Marden FA, Connolly AM, Siegel MJ, et al. Compositional analysis of muscle in boys with duchenne muscular dystrophy using MR imaging. Skeletal Radiol. 2005;34(3):140-148. https://doi.org/10.1007/s00256-004-0825-3
  35. Mathur S, Lott DJ, Senesac C, et al. Age-related differences in lower-limb muscle cross-sectional area and torque production in boys with duchenne muscular dystrophy. Arch Phys Med Rehabil. 2010;91(7):1051-1058. http://dx.doi.org/10.1016/j.apmr.2010.03.024
  36. Mathur S, Vohra RS, Germain SA, et al. Changes in muscle $T_2$ and tissue damage after downhill running in mdx mice. Muscle Nerve. 2011;43(6): 878-886. http://dx.doi.org/10.1002/mus.21986
  37. Matsumura K, Nakano I, Fukuda N, et al. Proton spin-lattice relaxation time of duchenne dystrophy skeletal muscle by magnetic resonance imaging. Muscle Nerve. 1988;11(2):97-102. https://doi.org/10.1002/mus.880110202
  38. Maunder-Sewry CA, Gorodetsky R, Yarom R, et al. Element analysis of skeletal muscle in duchenne muscular dystrophy using x-ray fluorescence spectrometry. Muscle Nerve. 1980;3(6):502-508. https://doi.org/10.1002/mus.880030607
  39. McKinnis LN. Fundamentals of Musculoskeletal Imaging. 4th ed. Philadelphia, PA, F.A. Davis Co., 2013:10.
  40. Mendell JR, Shilling C, Leslie ND, et al. Evidence-based path to newborn screening for duchenne muscular dystrophy. Ann Neurol. 2012; 71(3):304-313. http://dx.doi.org/10.1002/ana.23528
  41. Mizuno Y, Yoshida M, Nonaka I, et al. Expression of utrophin (dystrophin-related protein) and dystrophin-associated glycoproteins in muscles from patients with duchenne muscular dystrophy. Muscle Nerve. 1994;17(2):206-216. https://doi.org/10.1002/mus.880170212
  42. Moens P, Baatsen PH, Marechal G. Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. J Muscle Res Cell Motil. 1993;14(4):446-451. https://doi.org/10.1007/BF00121296
  43. Moxley RT 3rd, Pandya S, Ciafaloni E, et al. Change in natural history of duchenne muscular dystrophy with long-term corticosteroid treatment: Implications for management. J Child Neurol. 2010;25(9):1116-1129. http://dx.doi.org/10.1177/0883073810371004
  44. Ohlendieck K, Matsumura K, Ionasescu VV, et al. Duchenne muscular dystrophy: Deficiency of dystrophin-associated proteins in the sarcolemma. Neurology. 1993;43(4):795-800. https://doi.org/10.1212/WNL.43.4.795
  45. Ozawa E, Nishino I, Nonaka I. Sarcolemmopathy: Muscular dystrophies with cell membrane defects. Brain Pathol. 2001;11(2):218-230.
  46. Pardo AC, Do T, Ryder T, et al. Combination of steroids and ischial weight-bearing knee ankle foot orthoses in duchenne's muscular dystrophy prolongs ambulation past 20 years of age--a case report. Neuromuscul Disord. 2011;21(11): 800-802. http://dx.doi.org/10.1016/j.nmd.2011.06.006
  47. Petrof BJ, Shrager JB, Stedman HH, et al. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A. 1993;90(8):3710-3714. https://doi.org/10.1073/pnas.90.8.3710
  48. Rybakova IN, Amann KJ, Ervasti JM. A new model for the interaction of dystrophin with f-actin. J Cell Biol. 1996;135(3):661-672. https://doi.org/10.1083/jcb.135.3.661
  49. Sharma U, Atri S, Sharma MC, et al. Skeletal muscle metabolism in duchenne muscular dystrophy (DMD): An in-vitro proton NMR spectroscopy study. Magn Reson Imaging. 2003;21(2):145-153. https://doi.org/10.1016/S0730-725X(02)00646-X
  50. Shellock FG, Fukunaga T, Mink JH, et al. Exertional muscle injury: Evaluation of concentric versus eccentric actions with serial MR imaging. Radiology. 1991;179(3):659-664. https://doi.org/10.1148/radiology.179.3.2027970
  51. Sutherland-Smith AJ, Moores CA, Norwood FL, et al. An atomic model for actin binding by the CH domains and spectrin-repeat modules of utrophin and dystrophin. J Mol Biol. 2003;329(1): 15-33. https://doi.org/10.1016/S0022-2836(03)00422-4
  52. Tasca G, Pescatori M, Monforte M, et al. Different molecular signatures in magnetic resonance imaging-staged facioscapulohumeral muscular dystrophy muscles. PloS One. 2012;7(6):e38779. http://dx.doi.org/10.1371/journal.pone.0038779
  53. Termote JL, Baert A, Crolla D, et al. Computed tomography of the normal and pathologic muscular system. Radiology. 1980;137(2):439-444. https://doi.org/10.1148/radiology.137.2.7433677
  54. Torriani M, Townsend E, Thomas BJ, et al. Lower leg muscle involvement in duchenne muscular dystrophy: An MR imaging and spectroscopy study. Skeletal Radiol. 2012;41(4):437-445. http://dx.doi.org/10.1007/s00256-011-1240-1
  55. Wokke BH, van den Bergen JC, Versluis MJ, et al. Quantitative MRI and strength measurements in the assessment of muscle quality in duchenne muscular dystrophy. Neuromuscul Disord. 2014; 24(5):409-416. http://dx.doi.org/10.1016/j.nmd.2014.01.015