DOI QR코드

DOI QR Code

ON HOPF ALGEBRAS IN ENTROPIC JÓNSSON-TARSKI VARIETIES

  • ROMANOWSKA, ANNA B. (FACULTY OF MATHEMATICS AND INFORMATION SCIENCES WARSAW UNIVERSITY OF TECHNOLOGY) ;
  • SMITH, JONATHAN D.H. (DEPARTMENT OF MATHEMATICS IOWA STATE UNIVERSITY)
  • Received : 2014.10.24
  • Published : 2015.09.30

Abstract

Comonoid, bi-algebra, and Hopf algebra structures are studied within the universal-algebraic context of entropic varieties. Attention focuses on the behavior of setlike and primitive elements. It is shown that entropic $J{\acute{o}}nsson$-Tarski varieties provide a natural universal-algebraic setting for primitive elements and group quantum couples (generalizations of the group quantum double). Here, the set of primitive elements of a Hopf algebra forms a Lie algebra, and the tensor algebra on any algebra is a bi-algebra. If the tensor algebra is a Hopf algebra, then the underlying $J{\acute{o}}nsson$-Tarski monoid of the generating algebra is cancellative. The problem of determining when the $J{\acute{o}}nsson$-Tarski monoid forms a group is open.

Keywords

References

  1. B. A. Davey and G. Davis, Tensor products and entropic varieties, Algebra Universalis 21 (1985), no. 1, 68-88. https://doi.org/10.1007/BF01187558
  2. B. Jonsson and A. Tarski, Direct Decompositions of Finite Algebraic Systems, Notre Dame Mathematical Lectures, Notre Dame, IN, 1947.
  3. C. Kassel, Quantum Groups, Springer, New York, 1995.
  4. F. E. J. Linton, Autonomous equational categories, J. Math. Mech. 15 (1966), 637-642.
  5. S. Majid, A Quantum Groups Primer, Cambridge University Press, Cambridge, 2002.
  6. A. B. Romanowska and J. D. H. Smith, Modal Theory, Heldermann, Berlin, 1985.
  7. A. B. Romanowska and J. D. H. Smith, Modes, World Scientific, Singapore, 2002.
  8. J. D. H. Smith, On the characterisation of Mal'tsev and Jonsson-Tarski Algebras, Discuss. Math. Gen. Algebra Appl. 23 (2003), no. 2, 149-161. https://doi.org/10.7151/dmgaa.1070
  9. J. D. H. Smith, Modes, modals, and barycentric algebras: a brief survey and an additivity theorem, Demonstratio Math. 44 (2011), no. 3, 571-587.
  10. J. D. H. Smith and A. B. Romanowska, Post-Modern Algebra, Wiley, New York, NY, 1999.
  11. R. Street, Quantum Groups, Cambridge University Press, Cambridge, 2007.
  12. G. W. Whitehead, Elements of Homotopy Theory, Springer, New York, 1978.
  13. S. J. Witherspoon, The representation ring of the quantum double of a finite group, J. Algebra 179 (1996), no. 1, 305-329. https://doi.org/10.1006/jabr.1996.0014

Cited by

  1. Quantum quasigroups and loops vol.456, 2016, https://doi.org/10.1016/j.jalgebra.2016.02.014
  2. One-sided Hopf algebras and quantum quasigroups vol.46, pp.11, 2018, https://doi.org/10.1080/00927872.2018.1448847
  3. Hopf monoids in varieties vol.79, pp.2, 2018, https://doi.org/10.1007/s00012-018-0500-5