DOI QR코드

DOI QR Code

Localization of the Major Retinal Neurotransmitters and Receptors and Müller Glia in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum)

한국관박쥐 망막의 신경전달물질 및 수용체, 뮬러세포 동정

  • Lee, Jun-Seok (Dept. of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University) ;
  • Kwon, Oh-Ju (Dept. of Optometry, Busan Institute of Science and Technology) ;
  • Jeon, Tae-Heon (Boston Trinity Academy) ;
  • Jeon, Chang-Jin (Dept. of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University)
  • 이준석 (경북대학교 자연과학대학 생명과학부 (경북대학교 첨단복합 생명과학인력 양성사업단)) ;
  • 권오주 (부산과학기술대학교 보건웰빙학부 안경광학과) ;
  • 전태헌 (보스턴 트리니티 아카데미) ;
  • 전창진 (경북대학교 자연과학대학 생명과학부 (경북대학교 첨단복합 생명과학인력 양성사업단))
  • Received : 2015.08.20
  • Accepted : 2015.09.03
  • Published : 2015.09.30

Abstract

Purpose: The objective of this study was to investigate the visual system of the greater horseshoe bat (Rhinolophus ferrumequinum) by location analysis of some major neurotransmitters glutamate, ${\gamma}$-aminobutyric acid (GABA), acetylcholine, and their receptors, and $m{\ddot{u}}ller$ glial cells in retina. Methods: Standard immunocytochemical techniques were used after vibratome section of retinal tissues of adult greater horseshoe bat for this study. Immnoreactions in immunofluorescence images were analyzed using confocal microscope. Results: Anti-glutamate-immunoreactive neurons were mainly localized in the ganglion cell layer (GCL). The majority of anti-GABA-immunoreactive cells distributed in the inner nuclear layer (INL), and GABAA receptors were localized in the inner plexiform layer (IPL). Anti-choline acetyltransferase-immuoreactive cholinergic neurons were mainly located in the INL and GCL, and most of nicotinic acetylcholine receptors were localized in the IPL. The $m{\ddot{u}}ller$ cells in the retina of the greater horseshoe bat stretched theirs range from the GCL to outer nuclear layer (ONL). Conclusions: This study revealed that the retinas of the greater horseshoe bats contain the same major neurotransmitters and receptors, and glial cell in visually functional mammalian retinas. The present results may suggest that the greater horseshoe bats have the functional retinas for visual analysis through the organized retinal neural circuits.

목적: 본 연구에서는 한국관박쥐 망막에서의 시각계를 이해하기 위하여 한국관박쥐의 망막 내 글루타메이트 및 ${\gamma}$-aminobutyric acid (GABA), 아세틸콜린과 같은 중추신경계의 주요 신경전달물질과 수용체, 신경교세포인 뮬러세포의 분포를 분석하였다. 방법: 성체 한국관박쥐의 망막을 대상으로 하였다. 망막을 수직 절편한 다음, 표준면역세포화학법을 적용하였다. 공초점 현미경을 사용하여 면역형광이미지 내 면역반응성을 확인하였다. 결과: 한국관박쥐의 망막에서 글루타메이트에 대한 면역반응성을 나타내는 신경세포들은 주로 신경절세포층에 존재하였다. GABA에 대한 면역반응성을 가지는 신경세포들은 내핵층에 주요하게 분포했으며, GABA의 수용체들은 내망상층에 존재하였다. 아세틸콜린의 면역반응성 신경세포들은 주로 내핵층에 위치하고 있었으며, 니코틴성 아세틸콜린 수용체 각각의 면역반응성들은 대부분 내망상층에 밀집해 있었다. 한국관박쥐의 망막에서 신경교세포 중 하나인 뮬러세포는 신경절 세포층에서 외핵층까지 길게 뻗어 있었다. 결론: 본 연구를 통하여 한국관박쥐의 망막에도 다른 포유동물의 망막에 있는 주요 신경전달물질 및 수용체, 뮬러세포가 존재한다는 것이 밝혀졌다. 이와 같은 연구결과는 한국관박쥐는 조직화된 망막 신경회로를 가지는 기능적 망막을 가지고 있음을 의미한다.

Keywords

References

  1. Jones G, Rayner JNV. Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behav Ecol Sociobiol. 1989;25(3):183-191. https://doi.org/10.1007/BF00302917
  2. Ransome RD. The distribution of the Greater horse-shoe bat, Rhinolophus-ferrumequinum, during hibernation, in relation to environmental factors. J Zool. 1968;154(1):77-112. https://doi.org/10.1111/j.1469-7998.1968.tb05040.x
  3. Ransome RD, Hutson AM. Action plan for the conservation of the greater horseshoe bat in Europe (Rhinolophus ferrumequinum). Nature and Environment. 2000;109:7-52.
  4. Winter Y, Lpez J, von Helversen O. Ultraviolet vision in a bat. NATURE. 2003;425:612-614. https://doi.org/10.1038/nature01971
  5. Kim TJ, Jeon YK, Lee JY, Lee ES, Jeon CJ. The photoreceptor populations in the retina of the greater horseshoe bat Rhinolophus ferrumequinum. Mol Cells. 2008;26(4):373-379.
  6. Jeon YK, Kim TJ, Lee JY, Choi JS, Jeon CJ. AII amacrine cells in the inner nuclear layer of bat retina: identification by parvalbumin immunoreactivity. Neuroreport. 2007;18(11):1095-1112. https://doi.org/10.1097/WNR.0b013e3281e72afe
  7. Jeon YK, Kim TJ, Lee ES, Joo YR, Jeon CJ. Distribution of parvalbumin-immunoreactive retinal ganglion cells in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of Life Science. 2007;17(8):1068-1074. https://doi.org/10.5352/JLS.2007.17.8.1068
  8. Jeon YK, Joo YR, Ye EA, Kim MS, Jeon CJ. Histochemocal analysis of the cone cells in the retina of the greater horseshoe bat. J Korean Ophthalmic Opt Soc. 2013;18(2):187-191. https://doi.org/10.14479/jkoos.2013.18.2.187
  9. Kwon OJ, Jeon CJ. Distribution of Glutamate Receptors in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum). J Korean Ophthalmic Opt Soc. 2014;19(3):413-418. https://doi.org/10.14479/jkoos.2014.19.3.413
  10. Massey SC, Maguire G. The role of glutamate in retinal circuitry. In: Wheal H, Thomson A. (Eds.), Excitatory Amino Acids and Synaptic Transmission. Academic Press. 1995;201-221.
  11. Jeon CJ, Masland RH. Selective accumulation of diamidino yellow and chromomycin A3 by retinal glial cells. J Histochem Cytochem. 1993;41(11):1651-1658. https://doi.org/10.1177/41.11.8409373
  12. Jeon CJ, Strettoi E, Masland RH. The major cell populations of the mouse retina. J Neurosci. 1998;18(21):8936-8946.
  13. Massey SC. Cell types using glutamate as a neurotrans-mitter in the vertebrate retina. Prog Retinal Res. 1990;9:399-425. https://doi.org/10.1016/0278-4327(90)90013-8
  14. Kim TJ, Jeon YK, Lee JY, Lee ES, Jeon CJ. The photoreceptor populations in the retina of the greater horseshoe bat Rhinolophus ferrumequinum. Mol Cells. 2008;26(4):373-379.
  15. Marc RE, Murry RF, Basinger SF. Pattern recognition of amino acid signatures in retinal neurons. J Neurosci. 1995; 15(7):5106-5129.
  16. Reichenbach A, Robinson SR. The involvement of Müller cells in the outer retina. In: Djamgoz MBA, Archer SN, Vallerga S, editors. Neurobiology and clinical aspects of the outer retina, London: Chapman & Hall, 1995;395-416.
  17. Chun MH, Han SH, Chung JW, Wassle H. Electron microscopic analysis of the rod pathway of the rat retina. J Comp Neurol. 1993;332(4):421-432. https://doi.org/10.1002/cne.903320404
  18. Dacheux RF, Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci. 1986;6(2):331-345.
  19. Famiglietti EV, Kolb H. A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Res. 1975;84(2):293-300. https://doi.org/10.1016/0006-8993(75)90983-X
  20. Masland RH. The many roles of starburst amacrine cells. Trends Neurosci. 2005;28(8):395-396. https://doi.org/10.1016/j.tins.2005.06.002
  21. Briggman KL, Helmstaedter M, Denk W. Wiring specificity in the direction-selectivity circuit of the retina. Nature. 2011;471(7337):183-188. https://doi.org/10.1038/nature09818