DOI QR코드

DOI QR Code

Influence of Extender Oil on Properties of Solution Styrene-Butadiene Rubber Composites

  • Received : 2015.08.12
  • Accepted : 2015.08.27
  • Published : 2015.09.30

Abstract

Crosslink density of a rubber vulcanizate determines the chemical and physical properties, while bound rubber is an important factor to estimate reinforcement of a filled rubber compound. Extender oil is added to a raw rubber with very high molecular weight for improving processability of a rubber composite. Influence of extender oil on crosslink density, bound rubber formation, and physical properties of solution styrene-butadiene rubber (SSBR) composites with differing microstructures was investigated. Crosslink densities of non-oil-extended SSBR (NO-SSBR) vulcanizates were higher than those of oil-extended SSBR (OE-SSBR) ones. Bound rubber contents of NO-SSBR compounds were also greater than those of OE-SSBR ones. The experimental results could be explained by interfering of extender oil. The OE-SSBR vulcanizates had low modulus but long elongation at break, whereas the NO-SSBR ones had high modulus but short elongation at break. It was found that the crosslink densities affected the physical properties more than the bound rubber contents. The moduli increased with increase in the crosslink density irrespective of extender oil, while the elongation at break decreased. Each variation of the tensile strengths of NO-SSBR and OE-SSBR vulcanizates with the crosslink density showed a decreasing trend. Tear strength of the OE-SSBR vulcanizate increased with increase in the crosslink density, whereas variation of the tear strength of NO-SSBR vulcanizate with the crosslink density showed a weak decreasing trend.

Keywords

References

  1. G. R. Cotton, "Mixing of carbon black with rubber I. Measurement of dispersion rate by changes in mixing torque", Rubber Chem. Technol., 57, 118 (1984). https://doi.org/10.5254/1.3535988
  2. S. Wolff and U. Gorl, "The influence of modified carbon-blacks on viscoelastic compound properties", Kautsch. Gummi Kunstst., 44, 941 (1991).
  3. T. C. Gruber and C. R. Herd, "Anisometry measurements in carbon black aggregate populations", Rubber Chem. Technol., 70, 727 (1997). https://doi.org/10.5254/1.3538456
  4. A. K. Ghosh and B. Adhikari, "Reinforcing properties of a modified carbon black in NR and in an NR-NBR blend", Kautsch. Gummi Kunstst., 52, 681 (1999).
  5. S. Wolff and M.-J. Wang, "Filler-elastomer interactions. Part IV. The effect of the surface energies of fillers on elastomer reinforcement", Rubber Chem. Technol., 65, 329 (1992). https://doi.org/10.5254/1.3538615
  6. S.-S. Choi, "Filler-polymer interactions in both silica and carbon black-filled styrene-butadiene rubber compounds", J. Polym. Sci.: Part B: Polym. Phys., 39, 439 (2001). https://doi.org/10.1002/1099-0488(20010215)39:4<439::AID-POLB1016>3.0.CO;2-3
  7. S.-S. Choi, "Influence of polymer-filler interactions on retraction behaviors of natural rubber vulcanizates reinforced with silica and carbon black", J. Appl. Polym. Sci., 99, 691 (2006). https://doi.org/10.1002/app.22562
  8. S.-S. Choi and J.-C. Kim, "Thermal aging behaviors of weather resistant rubber composites of EPDM, IIR, and BIIR", Elast. Compos., 47, 148 (2012). https://doi.org/10.7473/EC.2012.47.2.148
  9. Y. Kim and S.-S. Choi, "Microstructural analysis of SBR blends using infrared spectroscopy", Elast. Compos., 49, 103 (2014). https://doi.org/10.7473/EC.2014.49.2.103
  10. S.-H. Jang, W.-S. Kim, Y.-G. Kang, M.-H. Han, and S.-M. Chang, "Study on mixing condition of the rubber composite containing functionalized S-SBR, silica and silane: II. Effect of mixing temperature and time", Elast. Compos., 48, 103 (2013). https://doi.org/10.7473/EC.2013.48.2.103
  11. S.-H. Jang, W.-S. Kim, Y.-G. Kang, M.-H. Han, and S.-M. Chang, "Study on mixing condition of the rubber composite containing functionalized S-SBR, silica and silane: I. Effect of mixing temperature", Elast. Compos., 48, 94 (2013). https://doi.org/10.7473/EC.2013.48.2.94
  12. J. H. Shin, A. M. Shanmugharaj, P. C. Lee, S. K. Jeoung, and S. H. Ryu, "Properties of SBR compound using silica-graphite dual phase filler", Elast. Compos., 49, 66 (2014). https://doi.org/10.7473/EC.2014.49.1.66
  13. D.-H. Kim and S. Kaang, "Determination of abrasion rate of SBR rubber compounds using a knife-blade abrader", Elast. Compos., 49, 149 (2014). https://doi.org/10.7473/EC.2014.49.2.149
  14. Y.-C. Ou, Z.-Z. Yu, A. Vidal, and J. B. Donnet, "Effects of alkylation of silica filler on rubber reinforcement", Rubber Chem. Technol., 67, 834 (1994). https://doi.org/10.5254/1.3538714
  15. Y. Li, M. J. Wang, T. Zhang, F. Zhang, and X. Fu, "Study on Dispersion Morphology of Silica in Rubber", Rubber Chem. Technol., 67, 693 (1994). https://doi.org/10.5254/1.3538704
  16. Choi, S.-S. "Improvement of filler dispersion in silica-filled styrene-butadiene rubber compounds using low molecular weight polybutadiene treated with maleic anhydride", Elastomer, 41, 10 (2006).
  17. E. Ko and S.-S. Choi, "Characterization and formation of chemical bonds of silica-coupling agent-rubber", Elast. Compos., 49, 239 (2014). https://doi.org/10.7473/EC.2014.49.3.239
  18. S. Wolff, U. Gorl, M. J. Wang, and W. Wolff, "Silane modified silicas", Eur. Rubber J., 16, 16 (1994).
  19. W. J. Kern and S. Futamura, "Effect of tread polymer structure on tyre performance Effect of tread polymer structure on tyre performance Effect of tread polymer structure on tyre performance Effect of tread polymer structure on tyre performance", Polymer, 29, 1801 (1988). https://doi.org/10.1016/0032-3861(88)90394-1
  20. S. Wolff, "Chemical aspects of rubber reinforcement by fillers", Rubber Chem. Technol., 69, 325 (1996). https://doi.org/10.5254/1.3538376
  21. M.-J. Wang, P. Zhang, and K. Mahmud, "Carbon-silica dual phase filler, a new generation reinforcing agent for rubber: Part IX. Application to truck tire tread compound", Rubber Chem. Technol., 74, 124 (2001). https://doi.org/10.5254/1.3547633
  22. J. T. Byers, "Fillers for balancing passenger tire tread properties", Rubber Chem. Technol., 75, 527 (2002). https://doi.org/10.5254/1.3547681
  23. S.-S. Choi, I.-S. Kim, and C.-S. Woo, "Influence of TESPT content on crosslink types and rheological behaviors of natural rubber compounds reinforced with silica", J. Appl. Polym. Sci., 106, 2753 (2007). https://doi.org/10.1002/app.25744
  24. N. J. Morrison and M. Porter, "Temperature effects on the stability of intermediates and crosslinks in sulfur vulcanization", Rubber Chem. Technol., 57, 63 (1984). https://doi.org/10.5254/1.3536002
  25. A. Y. Coran, "Vulcanization: Conventional and dynamic", Rubber Chem. Technol., 68, 351 (1995). https://doi.org/10.5254/1.3538748
  26. A. Mousa and J. Karger-Kocsis, "Rheological and thermodynamical behavior of styrene/butadiene rubber-organoclay nanocomposites", Macromol. Mater. Eng., 286, 260 (2001). https://doi.org/10.1002/1439-2054(20010401)286:4<260::AID-MAME260>3.0.CO;2-X
  27. M. Jacoba, S. Thomasa, and K. T. Varughese, "Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites", Compos. Sci. Technol., 64, 955 (2004). https://doi.org/10.1016/S0266-3538(03)00261-6
  28. P. B. Stickney and R. D. Falb, "Carbon black-rubber interactions and bound rubber", Rubber Chem. Technol., 37, 1299 (1964). https://doi.org/10.5254/1.3540401
  29. G. Kraus, "Reinforcement of elastomers by carbon black", Adv. Polym. Sci., 8, 155 (1971). https://doi.org/10.1007/3-540-05483-9_12
  30. C. M. Blow, "Polymer/particulate filler interaction - the bound rubber phenomena Polymer/particulate filler interaction - the bound rubber phenomenaPolymer/particulate filler interaction - the bound rubber phenomena Polymer/particulate filler interaction - the bound rubber phenome", Polymer, 14, 309 (1973). https://doi.org/10.1016/0032-3861(73)90124-9
  31. E. M. Dannberg, "Bound rubber and carbon black reinforcement", Rubber Chem. Technol., 59, 512 (1986). https://doi.org/10.5254/1.3538213
  32. S. Wolff, M.-J. Wang, and E.-H. Tan, "Improved quantitative determination of elastomers in tire rubber by kinetic simulation of DTG curves", Rubber Chem. Technol., 66, 163 (1993). https://doi.org/10.5254/1.3538304
  33. A. I. Medalia, "Morphology of aggregates: VI. Effective volume of aggregates of carbon black from electron microscopy; Application to vehicle absorption and to die swell of filled rubber", J. Colloid Interface Sci., 32, 115 (1970).
  34. G. Kraus, "A carbon black structure-concentration equivalence principle. Application to stress-strain relationships of filled rubbers", Rubber Chem. Technol., 44, 199 (1971). https://doi.org/10.5254/1.3547354
  35. P. P. A. Smit, "Glass transition in carbon black reinforced rubber", Rubber Chem. Technol., 41, 1194 (1968). https://doi.org/10.5254/1.3539184
  36. I. Pliskin and N. Tokita, "Bound rubber in elastomers: Analysis of elastomer-filler interaction and its effect on viscosity and modulus of composite systems", J. Appl. Polym. Sci., 16, 473 (1972). https://doi.org/10.1002/app.1972.070160217
  37. J. O'Brien, E. Cashell, G. E. Wardell, and V. J. McBrierty, "An NMR investigation of the interaction between carbon black and cis-polybutadiene", Macromolecules, 9, 653 (1976). https://doi.org/10.1021/ma60052a025
  38. A. L. Gal, X. Yang, and M. Kluppel, "Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis", J. Chem. Phys., 123, 014704 (2005). https://doi.org/10.1063/1.1943410
  39. J. L. Leblanc, "Elastomer-filler interactions and the rheology of filled rubber compounds", J. Appl. Polym. Sci., 78, 1541 (2000). https://doi.org/10.1002/1097-4628(20001121)78:8<1541::AID-APP110>3.0.CO;2-1
  40. J. L. Leblanc, "Rubber-filler interactions and rheological properties in filled compounds", Prog. Polym. Sci., 27, 627 (2002). https://doi.org/10.1016/S0079-6700(01)00040-5
  41. J. Leopoldes, C. Barres, J. L. Leblanc, and P. Georget, "Influence of filler-rubber interactions on the viscoelastic properties of carbon-black-filled rubber compounds", J. Appl. Polym. Sci., 91, 577 (2004). https://doi.org/10.1002/app.13155
  42. S.-S. Choi and E. Ko, "Novel test method to estimate bound rubber formation of silica-filled solution styrene-butadiene rubber compounds", Polym. Test., 40, 170 (2014). https://doi.org/10.1016/j.polymertesting.2014.09.003
  43. E. Ardrizzi and R. Vivirito, "Rubber processing or and rubber products containing it", US Patent No. 05504135 (1996).
  44. C. Flanigan, L. Beyer, D. Klekamp, D. Rohweder, and D. Haakenson, "Using bio-based plasticizers, alternative rubber", Rubber & Plastics News, Feb. 11, 15 (2013).
  45. S. S. Fernandez and S. Kunchandy, "Effect of nano $CaCO_3$ as a filler and linseed oil as an extender on the cure and mechanical properties of natural rubber vulcanizates", Orient. J. Chem., 29, 219 (2013). https://doi.org/10.13005/ojc/290135
  46. S. Mishra and N. G. Shimpi, "Mechanical and flame-retarding properties of styrene-butadiene rubber filled with nano- $CaCO_3$ as a filler and linseed oil as an extender", J. Appl. Polym. Sci., 98, 2563 (2005). https://doi.org/10.1002/app.22458
  47. S.-S. Choi and D.-H. Han, "Strain effect on recovery behaviors from circular deformation of natural rubber vulcanizate", J. Appl. Polym. Sci., 114, 935 (2009). https://doi.org/10.1002/app.30699
  48. S.-S. Choi and J.-C. Kim, "Lifetime prediction and thermal aging behaviors of SBR and NBR composites using crosslink density changes", J. Ind. Eng. Chem., 18, 1166 (2012). https://doi.org/10.1016/j.jiec.2012.01.011
  49. S.-S. Choi, H.-M. Kwon, Y. Kim, J. W. Bae, and J.-S. Kim, "Characterization of maleic anhydride-grafted ethylene-propylene-diene terpolymer (MAH-g-EPDM) based thermoplastic elastomers by formation of zinc ionomer", J. Ind. Eng. Chem., 19, 1990 (2013). https://doi.org/10.1016/j.jiec.2013.03.011
  50. P. J. Flory, "Statistical mechanics of swelling of network structures", J. Chem. Phys., 18, 108 (1950). https://doi.org/10.1063/1.1747424
  51. J. S. Deng and A. I. Isayev, "Injection molding of rubber compounds: Experimentation and simulation", Rubber Chem. Technol., 64, 296 (1991). https://doi.org/10.5254/1.3538560
  52. A. J. Marzocca, "Evaluation of the polymer-solvent interaction parameter $\chi$ for the system cured styrene butadiene rubber and toluene", Eur. Polym. J., 43, 2682 (2007). https://doi.org/10.1016/j.eurpolymj.2007.02.034
  53. S.-S. Choi, "Influence of storage time and temperature and silane coupling agent on bound rubber formation in filled styrene-butadiene rubber compounds", Polym. Test., 21, 201 (2002). https://doi.org/10.1016/S0142-9418(01)00071-X
  54. S.-S. Choi, "Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber", Polym. Adv. Technol., 13, 466 (2002). https://doi.org/10.1002/pat.211
  55. S.-S. Choi, K.-J. Hwang, and B.-T. Kim, "Influence of bound polymer on cure characteristics of natural rubber compounds reinforced with different types of carbon blacks", J. Appl. Polym. Sci., 98, 2282 (2005). https://doi.org/10.1002/app.22287