DOI QR코드

DOI QR Code

Desulfurization Characteristics of Domestic Limestones through Simultaneous Calcination and Desulfurization Reaction

국내 석회석들의 소성 탈황 동시반응 특성

  • Shin, Ji Hoon (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Kim, Yea Ra (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Kook, Jin Woo (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Kwak, In Seop (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Park, Kyoung-Il (Green Energy Laboratory, Korea Electric Power Corporation (KEPCO) Research Institute) ;
  • Lee, Jong-Min (Green Energy Laboratory, Korea Electric Power Corporation (KEPCO) Research Institute) ;
  • Lee, See Hoon (Department of Resources and Energy Engineering, Chonbuk National University)
  • 신지훈 (전북대학교 자원에너지공학과) ;
  • 김예라 (전북대학교 자원에너지공학과) ;
  • 국진우 (전북대학교 자원에너지공학과) ;
  • 곽인섭 (전북대학교 자원에너지공학과) ;
  • 박경일 (전력연구원 그린에너지연구소) ;
  • 이종민 (전력연구원 그린에너지연구소) ;
  • 이시훈 (전북대학교 자원에너지공학과)
  • Received : 2015.06.23
  • Accepted : 2015.07.17
  • Published : 2015.10.10

Abstract

In order to analyze and compare the desulfurization characteristics of five different kinds of domestic limestons, a thermogravimetric analyzer (TGA) was used in this study. Calcium carbonate contents of the domestic limestone varied from 91 to 96 wt%. Experimental temperature and sulfur dioxide concentration of $850^{\circ}C$ and 2,750 ppm, respectively were selected to simulate commercial operation conditions. In this study, the calcination and desulfurization reaction of limestones were simultaneously occurred and investigated to simulate in-situ desulfurization reaction in commercial circulating fluidized bed combustors. In addition, desulfurization reactivities of limes having the average particle sizes of 37.5, 90.5, 159, 356 and $750{\mu}m$ were investigated. Desulfurization reactivities via simultaneous calcination and desulfurization reactions were 5-20% lower than those of using general desulfurization reactions.

순환유동층 보일러에서 보일러 내의 탈황을 위해 사용되는 국내 석회석 5종의 탈황반응성을 비교 및 분석하기 위해서 TGA (Thermogravimetric analyzer)를 이용하여 실험하였다. 실험에 사용한 석회석 시료들의 $CaCO_3$ 함량은 91-96 wt%이었으며 실험 조건은 상용 순환유동층 보일러의 운전 조건과 유사한 $850^{\circ}C$의 온도와 2,750 ppm의 $SO_2$로 하였다. 실제 순환유동층 반응기 내에서 진행되는 보일러 내의 탈황을 모사하기 위하여 탈황제인 석회석의 소성과 탈황 반응을 순차적으로 진행하는 일반적인 탈황 반응과 달리 소성과 탈황 반응을 동시에 진행하였다. 또한 37.5, 90.5, 159, 356, $750{\mu}m$의 평균 입도를 가지도록 석회석을 분류하여 석회석의 입도에 따른 탈황 반응성의 변화를 고찰하였다. 석회석의 소성 탈황 동시 반응에서 측정된 탈황 결과는 기존의 석회석 탈황 결과보다 5-20% 정도 낮아 석회석의 로내 탈황에 더 많은 석회석이 필요함을 보여주었다.

Keywords

References

  1. Y. Wu and E. J. Anthony, Investigation of sulphation behavior of two fly ashy samples produced from combustion of different fuels in a 654 MWe CFB boiler, Powder Tech., 208, 237-241 (2011). https://doi.org/10.1016/j.powtec.2010.12.012
  2. E. J. Anthony and D. L. Granatstein, Sulfation phenomena in fluidized bed combustion systems, Prog. Energy Combust. Sci., 27, 215-236 (2001). https://doi.org/10.1016/S0360-1285(00)00021-6
  3. Y. C. Bak, Sulfation Reaction kinetics of pulverized Korean Dolomite and limestone using Thermogravimetric Analyses, Energy Eng. J., 7, 216-222 (1998).
  4. K. Laursen, W. Duo, J. R. Grace, and J. Lim, Sulfation and reactivation characteristics of nine limestones, Fuel, 79, 153-163 (1999).
  5. S. K. Kang and M. K. Chung, Specific surface area and pore structure changes of calcined Lime withe calcination and sulfation reaction, Korean J. Sanit., 13, 19-29 (1998).
  6. S. V. Pisupati, R. S. Wasco, J. L. Morrison, and A. W. Scaroni, Sorbent behaviour in circulating fluidized bed combustors, Fuel, 75, 759-768 (1995).
  7. H. T. Jang and G. J. Lee, Analysis of calcination characteristics of Limestone in a fluidized bed reactor, J. Korea Ind. Eng. Chem., 11, 69-74 (2000).
  8. K. H. Han, J. I. Ryu, and G. T. Jin, Desulfurization characteristics of Domestic Anthracite by limestone at bench scale pressurized fluidized bed combustor, Trans. Korean Soc. Mech. Eng. B, 25, 1373-1383 (2001).
  9. S. R. Braganca and J. L. Castellan, FBC desulfurization process using coal with low sulfur content, high oxidizaing conditions and metamorphic limestones, Braz. J. Chem. Eng., 26, 375-383 (2009). https://doi.org/10.1590/S0104-66322009000200015
  10. F. Montagnaro, P. Salatino, and F. Scala, The influence of temperature o limestone sulfation and attrition under fluidized bed combustion conditions, Exp. Therm. Fluid Sci., 34, 352-358 (2010). https://doi.org/10.1016/j.expthermflusci.2009.10.013
  11. K. S. Lee, J. H. Jung, S. I. Keel, H. K. Lee, and S. S. Kim, Characteristics of CaCO3 sorbent particles for the In-Furnace desulfurization process: Effects of residence time and atmospheric condition, Trans. Korean Soc. Mech. Eng. B, 34, 121-127 (2010). https://doi.org/10.3795/KSME-B.2010.34.2.121
  12. F. Scala, R. Chirone, P. Meloni, G. Carcangiu, M. Manca, G. Mulas, and A. mulas, Fluidized bed desulfurization using lime obtained after slow calcination of limestone particles, Fuel, 114, 99-105 (2013). https://doi.org/10.1016/j.fuel.2012.11.072
  13. H. P. Kuo, H. Y. Tseng, A. N. Huang, and R. C. Hsu, A study of the ash production behavior of spent limestone powders in CFB, Adv. Powder Tech., 25, 472-475 (2014). https://doi.org/10.1016/j.apt.2013.04.014
  14. S. H. Lee, J. M. Lee, J. S. Kim, J. H. Choi, and S. D. Kim, Combustion characteristics of anthracie coal in the D CFB boiler, Hwahak Konghak, 38, 516-522 (2000).
  15. H. S. Jammulamadaka, H. B. Vuthaluru, D. H. French, and S. V. Pisupati, A study of Indian limestones for sulfur capture in FBC plants: Particle size sensitivity of sulfation behavior, Fuel, doi:10.1016/j.fuel.2015.06.049.

Cited by

  1. 순환유동층 보일러 로내 탈황을 위한 석회석 평가 vol.57, pp.6, 2015, https://doi.org/10.9713/kcer.2019.57.6.853
  2. Experimental study on calcination and fragmentation characteristics of limestone in fluidized bed vol.95, pp.None, 2015, https://doi.org/10.1016/j.joei.2021.01.014