DOI QR코드

DOI QR Code

Characterization and Transdermal Delivery of Ethosomes Loaded with Liquiritigenin and Liquiritin

리퀴리티게닌과 리퀴리틴을 담지한 에토좀의 특성 및 경피 전달

  • Im, Na Ri (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Hae Soo (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Lim, Ji Won (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Kyeong Jin (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Noh, Geun Young (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 임나리 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 김해수 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 임지원 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 김경진 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 노근영 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Received : 2015.06.23
  • Accepted : 2015.09.06
  • Published : 2015.10.10

Abstract

Liquiritin and its aglycone, liquiritigenin are flavonoid found in licorice that show anti-oxidant and anti-aging properties. In this study, ethosomes loaded with hydrophobic liquiritigenin or liquiritin were prepared as a transdermal delivery system. The particle size, entrapment efficiency, and skin permeability of ethosomes were evaluated. Ethosome containing liquiritigenin was stable up to 2 mM and ethosome containing liquiritin was stable up to 0.75 mM concentration. The particle size of ethosomes containing 0.75 mM liquiritigenin and liquiritin was 143.85 and 158.90 nm, respectively and the entrapment efficiency was 47.51 and 54.61%, respectively. The entrapment efficiency was improved with increasing concentrations of drugs. Ethosomes loaded with liquiritigenin or liquiritin were superior in skin permeation ability compared to that of 20% ethanol solution and conventional liposomes. These results suggest that ethosomes containing 0.50 mM liquiritigenin or liquiritin are effective for the skin permeation and may be used as an antiaging and antioxidant ingredient in cosmetic formulation.

배당체 리퀴리틴 및 그 아글리콘인 리퀴리티게닌은 항산화 및 항노화 활성이 뛰어난 한국산 감초 성분이다. 본 연구에서는 리퀴리티게닌과 리퀴리틴의 피부 전달시스템으로 에토좀을 제조하고 입자크기, 포집 효율 및 피부 투과능을 평가하였다. 리퀴리틴게닌의 경우 2 mM 농도까지 안정한 에토좀이 형성되었고, 리퀴리틴은 0.75 mM 농도까지 안정하게 형성되었다. 0.75 mM 리퀴리티게닌과 리퀴리틴을 함유한 에토좀의 입자크기는 각각 143.85, 158.90 nm이었으며, 포집 효율은 각각 47.51, 54.61%이었고 약물의 농도에 의존적으로 포집 효율이 증가하는 경향을 나타내었다. 피부투과 실험을 수행한 결과, 리퀴리티게닌과 리퀴리틴 모두 에토좀이 일반 리포좀이나 에탄올 용액보다 더 우수한 피부 투과능을 보여주었다. 이는 0.50 mM 리퀴리틴게닌 및 리퀴리틴을 담지한 에토좀이 피부전달에 효과적이며, 항노화 및 항산화 화장품 제형으로서 이용 가능성이 있음을 시사한다.

Keywords

References

  1. S. B. Han, H. A. Gu, S. J. Kim, H. J. Kim, S. S. Kwon, H. S. Kim, S. H. Jeon, J. P. Hwang, and S. N. Park, Comparative study on antioxidative activity of Glycyrrhiza uralensis and Glycyrrhiza glabra extract by conutry of origin, J. Soc. Cosmet. Sci. Korea, 39, 1-8 (2013).
  2. S. Wang, M. Gue, J. Cong, and S. Li, Facile optimization for chromatographic separation of liquiritin and liquiritigenin, J. Chromatogr. A, 1282, 167-171 (2013). https://doi.org/10.1016/j.chroma.2013.01.075
  3. H. J. Kim, J. Y. Bae, H. N. Jang, and S. N. Park, Comparative study on the antimicrobial activity of Glycyrrhiza uralensis and Glycyrrhiza glabra extracts with various countries of origin as natural antiseptics, Korean J. Microbiol. Biotechnol., 41, 358-366 (2013). https://doi.org/10.4014/kjmb.1307.07003
  4. E. J. Yang, G. H. Park, and K. S. Song, Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells, Neurotoxicology, 39, 114-123 (2013). https://doi.org/10.1016/j.neuro.2013.08.012
  5. J. J. Thiele, C. Schroeter, S. N. Hsieh, M. Podda, L. Packer, J. Thiele, and P. Elsner, Oxidants and antioxidants in cutaneous biology, Curr Probl Dermatol., 29, 26-42 (2001).
  6. V. S. Sylvie and F. Bonte, Skin hydration : A review on its molecular mechanisms, J. Cosmetic Dermatol., 6, 75-82 (2007). https://doi.org/10.1111/j.1473-2165.2007.00300.x
  7. Y. J. Ahn, B. R. Won, M. K. Kang, J. H. Kim, and S. N. Park, Antioxidant activity and component analysis of fermented Lavendula angustifolia extracts, J. Soc. Cosmet. Sci. Korea, 35, 125-134 (2009).
  8. A. Naqui and B. Chance, Reactive oxygen intermediates in biochemistry, Ann. Rev. Biochem., 55, 137-166 (1986). https://doi.org/10.1146/annurev.bi.55.070186.001033
  9. H. G. Yang, H. J. Kim, H. S. Kim, and S. N. Park, Ethosome formulation for enhanced transdermal delivery of Artemisia princeps Pampanini extracts, Appl. Chem. Eng., 24, 190-195 (2013).
  10. H. A. Gu, H. S. Kim, M. J. Kim, E. R. Yu, G. Joe, J. Jang, B. Kim, and S. N. Park, Characterization and transdermal delivery of ethosomes loaded with Eucommia ulmoides Extract, Appl. Chem. Eng., 24, 639-644 (2013). https://doi.org/10.14478/ace.2013.1090
  11. S. J. Kim, S. S. Kwon, S. H. Jeon, E. R. Yu, and S. N. Park, Enhanced skin delivery of liquiritigenin and liquiritin-loaded liposome-in-hydrogel complex system, Int. J. Cosmet Sci., 36, 553-560 (2014). https://doi.org/10.1111/ics.12156
  12. S. N. Park, L. M. Sun, M. A. Park, S. S. Kwon, and S. B. Han, Transdermal delivery of quercetin using elastic liposomes: preparation, characterization and in vitro skin permeation study, Polymer, 36, 705-711 (2012).
  13. H. A. Gu, M. J. Kim, H. S. Kim, J. H. Ha, E. R. Yu, and S. N. Park, Characteristics and cellular protective effects against UVA of cationic liposome loaded with quercetin and rutin, Appl. Chem. Eng., 26, 165-172 (2015). https://doi.org/10.14478/ace.2015.1002
  14. Y. P. Fang, Y. H. Tsai, P. C. Wu, and Y. B. Huang, Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy, Int. J. Pharm., 356, 144-152 (2008). https://doi.org/10.1016/j.ijpharm.2008.01.020
  15. D. Paolino, G. Lucania, D. Mardente, F. Alhaique, and M. Fresta, Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers, J. Control. Release, 106, 99-110 (2005). https://doi.org/10.1016/j.jconrel.2005.04.007
  16. Y. P. Fang, Y. B. Huang, P. C. Wu, and Y. H. Tsai, Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior, Eur. J. Pharm. Biopharm., 73, 391-398 (2009). https://doi.org/10.1016/j.ejpb.2009.07.011
  17. S. N. Park, H. J. Lee, H. S. Kim, M. A. Park, and H. A. Gu, Enhanced transdermal deposition and characterization of quercetin-loaded ethosomes, Korean J. Chem. Eng., 30, 688-692 (2013). https://doi.org/10.1007/s11814-012-0171-4
  18. S. N. Park, H. J. Lee, and H. A. Gu, Enhanced skin delivery and characterization of rutin-loaded ethosomes, Korean J. Chem. Eng., 31, 485-489 (2014). https://doi.org/10.1007/s11814-013-0232-3

Cited by

  1. Physical characteristics and in vitro skin permeation of elastic liposomes loaded with caffeic acid-hydroxypropyl-β-cyclodextrin vol.33, pp.9, 2016, https://doi.org/10.1007/s11814-016-0146-y
  2. Recent Advances in Drug Delivery System for Bioactive Glycosides from Traditional Chinese Medicine pp.1793-6853, 2018, https://doi.org/10.1142/S0192415X18500908