DOI QR코드

DOI QR Code

Emission of Carbon Monoxide and Carbon Dioxide Gases during Fire Tests of Specimens Treated with Phosphorus-Nitrogen Additives

인-질소 첨가제로 처리된 시험편의 연소 시에 발생하는 일산화탄소와 이산화탄소 생성

  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2015.08.11
  • Accepted : 2015.08.24
  • Published : 2015.10.10

Abstract

This study was to investigate the production of combustion toxic gases of pinus rigida specimens treated with pyrophosphoric acid (PP)/4ammonuium ion ($4NH_4{^+}$), methylenepiperazinomethyl-bis-phosphonic acid (PIPEABP) and PIPEABP/$4NH_4{^+}$. Each pinus rigida plates was painted in three times with 15 wt% in the aqueous solution followed by drying the species at room temperature. Emission of combustion toxic gases was examined by the cone calorimeter (ISO 5660-1). First-time to peak mass loss rate (1st-$TMLR_{peak}$) treated with chemicals was delayed upto 66.7~250.0% compared to those of untreated specimens. For test pieces treated with the chemicals, the emission of peak carbon monoxide ($CO_{peak}$) values of 0.0136~0.0178% and peak carbon dioxide ($CO_{2\;peak}$) value of 0.04432~0.3648% were obtained, which were higher than those for the virgin plate. In particular, oxygen emission is much higher than the level of 15% which can be fatal to humans. Therefore, the resulting risk could be eliminated. However it is supposed that the combustion-toxicities were partially increased compared to those of virgin plate.

이 연구에서는 피로인산/4암모늄이온, 메틸렌피페라지노메틸-비스-포스폰산, 메틸렌피페라지노메틸-비스-포스폰산/4암모늄이온의 화학 첨가제로 처리된 리기다 소나무의 연소독성가스의 생성을 고찰하였다. 15 wt%의 화학 첨가제 수용액으로 각각 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소독성가스의 생성을 시험하였다. 그 결과, 화학 첨가제로 처리한 시험편의 1차-최대질량감소율도달시간(1st-$TMLR_{peak}$)은 무처리 시험편에 비교하여 (66.7~250.0)%의 지체된 시간을 나타내었다. 반면에 첨가제로 처리한 시험편에 대한 최대일산화탄소 생성($CO_{peak}$), (0.0136~0.0178)% 및 최대이산화탄소 생성($CO_{2\;peak}$), (0.04432~0.3648)%은 공시험편보다 높게 나타났다. 특별히 $O_2$의 생성농도는 사람에게 치명적일 수 있는 수준인 15%보다는 훨씬 높으므로 그로 인한 위험성은 배제할 수 있었다. 그러나 화학 첨가제로 처리한 시험편은 처리하지 않은 시험편과 비교하여 연소-유독성을 부분적으로 증가시켰다.

Keywords

References

  1. R. H. White and M. A. Dietenberger, Wood Handbook: Wood as an Engineering Material, Ch.17: Fire Safety (1999).
  2. A. Ernst and J. D. Zibrak, Carbon Monoxide Poisoning, N. Engl. J. Med., 339(22), 1603-1608 (1998). https://doi.org/10.1056/NEJM199811263392206
  3. S. R. Thom, Carbon Monoxide Pathophysiology and Treatment, Physiology and Medicine of Hyperbaric Oxygen Therapy, 321-347, Philadelphia: Saunders Elsevier (2008).
  4. C. L. Beyler, SFPE Handbook of Fire Protection Engineering, Section 2, 114-115. Quincy Massachusetts: National Fire Protection Association (2008).
  5. Toxicology Update, J. Appl. Toxicol., 19(5), 379-386. John Wiley&Sons, Ltd. (1999). https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
  6. D. A. Purser, A Bioassay Model Fortesting the Incapacitating Effects of Exposure to Combustion Product Atmospheres Using Cynomolgus Monkeys, J. Fire. Sci., 2(1), 20-26 (1984). https://doi.org/10.1177/073490418400200104
  7. B. G. King, High Concentration-short Time Exposures and Toxicity, J. Ind. Hyg. Toxicol., 31(6), 365-375 (1949).
  8. U. C. Luft, Aviation Physiology: the Effects of Altitude in Handbook of Physiology, American Physiology Society, 1099-1145, Washington, DC (1965).
  9. V. Babrauskas, New Technology to Reduce Fire Losses and Costs, Eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK (1986).
  10. M. M. Hirschler, Thermal Decomposition and Chemical Composition, 239, ACS Symposium Series 797 (2001).
  11. O. Grexa, E. Horvathova, O. Besinova, and P. Lehocky, Falme Retardant Treated Plyood, Polym. Degrad. Stab., 64, 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  12. Cischem Com, Flame Retardants, Chischem. Com. CO., Ltd. (2009).
  13. Y. J. Chung and E. Jin, Synthesis of Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives, J. Korean Oil Chem. Soc., 30(1), 1-8 (2013). https://doi.org/10.12925/jkocs.2013.30.1.001
  14. ISO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method), Genever (2002).
  15. W. T. Simpso, Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, Wood Handbook-Wood as an Engineering Material, 1-21, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. (1987).
  16. V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  17. E. Jin and Y. J. Chung, Combustion Characteristics of Pinus Rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid ($M^{2+}$), Fire Sci. Eng., 27(6), 70-76 (2013). https://doi.org/10.7731/KIFSE.2013.27.6.070
  18. Y. J. Chung, Combustive Propertiess of Specimens Treated with Methylenepiperazinomethyl-Bis-Phosphonic Acid ($M^{n+}$)s, Appl. Chem. Eng., 26(4), 505-510 (2015). https://doi.org/10.14478/ace.2015.1068
  19. M. J. Spearpoint and G. J. Quintiere, Predicting the Burning of Wood Using an Integral Model, Combust. Flame, 123, 308-325 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  20. M. Risholm-Sundman, M. Lundgren, E. Vestin, and P. Herder, Emissions of Acetic Acid and Other Volatile Organic Compounds From Different Species of Solid Wood, Holzals Roh-und Werkstoff, 56, 125-129 (1998). https://doi.org/10.1007/s001070050282
  21. J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  22. G. Kimmerle, Aspects and Methodology for the Evaluation of Toxicological Parameters During Fire Exposure, J. Combust. Toxicol., 1, 4-51 (1974).
  23. A. P. Mourituz, Z. Mathys, and A. G. Gibson, Heat Release of Polymer Composites in Fire, Compos. Part A, 38(7), 1040-1054 (2005).
  24. OHSA, Carbon Monoxide, OSHA Fact Sheet, United States National Institute for Occupational Safety and Health (2009).
  25. OHSA, Carbon Dioxide, Toxicological Review of Selected Chemicals, Final Rule on Air Comments Project, OHSA's Comments (1989).
  26. MSHA, Carbon Monoxide, MSHA's Occupational Illness and Injury Prevention Program Topic, U.S. Department of Labor (2015).