DOI QR코드

DOI QR Code

Effect of the Compatibilizer on Physical Properties of Polypropylene (PP)/Bamboo Fiber (BF) Composites

폴리프로필렌/대나무 섬유 복합체의 물성에 대한 상용화제의 영향

  • Received : 2015.08.20
  • Accepted : 2015.09.11
  • Published : 2015.10.10

Abstract

Polypropylene (PP)/bamboo fiber (BF) composites were fabricated by twin screw extruder in order to investigate effects of the compatibilizer on physical properties of PP/BF composites. The content of BF changed from 10 to 25 wt% and that of the compatibilizer was fixed at 3 wt%. Maleic anhydride grafted PP (PP-g-MAH) was used to increase the compatibility between PP and BF as a compatibilizer. Chemical structures of the composites were confirmed by the existence of carbonyl group (C=O) stretching peak at $1,700cm^{-1}$ in FT-IR spectrum. Considering the degradation and mechanical properties, the optimum extrusion conditions were selected to be $210^{\circ}C$ and 100 rpm, respectively. There was no distinct changes in melting temperature of the composites, but the crystallization temperature increased by $10-20^{\circ}C$ owing to the heterogeneous nuclei of BF. It was checked that the optimum BF content was in the range of 15-20 wt% from the results of tensile and flexural properties of the composites. The effect of the compatibilizer on mechanical properties was confirmed by SEM images of fractured surface and contact angles.

폴리프로필렌(polypropylene, PP)과 대나무 섬유(bamboo fiber, BF) 복합체의 물성에 미치는 상용화제의 영향을 고찰하기 위해 이축압출기를 이용하여 PP/BF 복합체를 제조하였다. BF의 함량은 10에서 25 wt%로 변량하였고, 상용화제는 3 wt%로 고정하였으며, 폴리프로필렌과 대나무 섬유와의 혼화성 증대를 위한 상용화제는 무수말레인산(maleic anhydride, MAH)이 그라프트된 PP-g-MAH를 사용하였다. 상용화제를 적용한 복합체의 화학구조는 적외선 분광 스펙트럼의 $1700cm^{-1}$ 근처에서 나타나는 카르보닐기(C=O) 신축진동 피크의 존재 여부를 통해 확인하였으며, 압출온도와 스크류 회전속도는 기계적 물성과 탄화 정도를 고려하여 210, 100 rpm으로 선정하였다. PP/BF 복합체의 용융거동은 큰 차이를 보이지 않았지만 결정화 온도는 $10-20^{\circ}C$ 정도 증가를 나타내었고, 이는 BF가 불균일 핵제로 작용하기 때문으로 해석할 수 있다. 인장시험, 굴곡시험을 통해 BF의 함량이 15-20 wt%일 때 상용화제의 효과가 뚜렷하게 나타나는 것을 확인하였고, 이는 PP와 BF의 계면 접착특성으로 설명할 수 있다. 계면 접착특성 향상은 파단면의 SEM 사진과 접촉각을 통해 확인하였다.

Keywords

References

  1. S. S. Ka, K. H. Moon, and C. J. Jang, Development trend of automotive natural fiber reinforced plastic composite and development of light weight material with LFP, Conference of KSAE, 09-80226, 1349-1355 (2009).
  2. S. B. Kwak, S. L. Lee, H. Y. Lee, S. H. Yun, S. H. Kim, and J. Y. Lee, Development of door trim which applied integration process using eco uni-material, Annual Conference of KSAE, 11, 2491-2497 (2011).
  3. H. P. S. Abdul Khaili, I. U. H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan, and Y. S. Hadi, Bamboo fibre reinforced biocomposites : A review, Mater. Design, 42, 353-368 (2012). https://doi.org/10.1016/j.matdes.2012.06.015
  4. P. Zakikhani, R. Zahari, M. T. H. Sultan, and D. L. Majid, Extraction and preparation of bamboo fibre-reinforced composites, Mater. Design, 63, 820-828 (2014). https://doi.org/10.1016/j.matdes.2014.06.058
  5. D. G. Liu, J. W. Song, D. P. Anderson, P. R. Chang, and Y. Hua, Bamboo fiber and its reinforced composites: structure and properties, Cellulose, 19, 1449-1480 (2012). https://doi.org/10.1007/s10570-012-9741-1
  6. C. A. Fuentes, L. Q. N. Tran, C. Dupont-Gillain, A. W. Van vuure, and I. Verpoest, Effect of interfacial adhesion on mechanical behavior of bamboo fiber reinforced thermoplastic composites, Eurpean Conference on Composite Material, 24-28 (2012).
  7. G. F. Cai, J. K. Wang, Y. N. Nie, X. C. Tian, X. D. Zhu, and Z. P. Zhou, Effects of toughening agents on the behaviors of bamboo plastic composites, Polym. Compos, 32, 1945-1952 (2011). https://doi.org/10.1002/pc.21223
  8. H. Liu, Q. Wu, G. Han, Y. Kojima, and S. Suzuki, Compatibilizing and toughening bamboo flour filled HDPE composites: mechanical properties and morphologies, Compos. Part A, 39, 1891-1900 (2008). https://doi.org/10.1016/j.compositesa.2008.09.011
  9. S. K. Nayak, S. Mohanty, and S. K. Samal, Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites, Mater. Sci. Eng. A, 523, 32-38 (2009). https://doi.org/10.1016/j.msea.2009.06.020
  10. J. H. Lee, B. G. Lee, K. H. Park, D. S. Bang, K. H. Jhee, and M. C. Sin, Preparation and characterization of wood polymer composites by a twin screw extrusion, Elastomer Composites, 46, 211-217 (2011).
  11. T. Panuikallio, J. Kasanen, M. Suvanto, and T. Pakkanen, Influence of maleated polypropylene on mechanical properties of composites made of viscose fiber and polypropylene, J. Appl. Polym. Sci., 87, 1895-1900 (2003). https://doi.org/10.1002/app.11919
  12. H. S. Kim, B. H. Lee, S. W. Choi, S. M. Kim, and H. J. Kim, The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bioflour filled polypropylene composites, Compos. Part A, 38, 1473-1482 (2007). https://doi.org/10.1016/j.compositesa.2007.01.004
  13. A. P. Deshpande, M. B. Rao, and C. L. Rao, Extraction of bamboo fibers and their use as reinforcement in polymeric composites, J. Appl. Polym. Sci., 76, 83-92 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000404)76:1<83::AID-APP11>3.0.CO;2-L
  14. I. Kellersztein and A. Dotan, Chemical surface modification of wheat straw fibers for polypropylene reinforcement, Polym. Compos., DOI:10.1002/PC.23392 (2015).
  15. S. K. Chattopadhyay, R. K. Khandal, R. Uppaluri, and A. K. Ghoshal, Bamboo fiber reinforced polypropylene composites and their mechanical, thermal and morphological properties, J. Appl. Polym., 119, 1619-1626 (2011). https://doi.org/10.1002/app.32826
  16. S. Migneault, A. Koubaa, P. Perre, and B. Riedl, Effects of wood fiber surface chemistry on strength of wood-plastic composites, Appl. Surf. Sci., 343, 11-18 (2015). https://doi.org/10.1016/j.apsusc.2015.03.010
  17. H. Askanian, V. Verney. S. Commereuc, R. Guyonnet, and V. Massardier, Wood polypropylene composites prepared by thermally modified fibers at two extrusion speed mechanical and viscoelastic properties, Holzforschung, 69, 313-319 (2015).
  18. F. M. Salleh, A. Hassan, R. Yahya, and A. D. Azzahari, Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber HDPE composites, Compos. Part B, 58, 259-266 (2014). https://doi.org/10.1016/j.compositesb.2013.10.068

Cited by

  1. Effect of the Chemical Treatment and Fiber Length of Kenaf on Physical Properties of HDPE/Kenaf/Expandable Microcapsule vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1026
  2. 대나무 섬유(BF) 및 PP/BF 복합체의 물성에 미치는 BF의 화학적 처리의 영향 vol.29, pp.2, 2015, https://doi.org/10.14478/ace.2017.1118