DOI QR코드

DOI QR Code

락토바실러스 아시도필러스 CBT LA1 생균과 사균체의 세포부착력, 자가응집력, 소수성 상호작용력, LPS 결합력에 대한 평가

Assessment of cell adhesion, cell surface hydrophobicity, autoaggregation, and lipopolysaccharide-binding properties of live and heat-killed Lactobacillus acidophilus CBT LA1

  • 투고 : 2015.07.28
  • 심사 : 2015.08.18
  • 발행 : 2015.09.30

초록

프로바이오틱스에 대한 연구는 주로 생균의 효과가 많이 알려져 있지만 가열 처리된 유산균인 사균체의 기능에 대한 연구도 활발히 이루어지고 있다. 본 연구에서는 락토바실러스 아시도필러스 CBT LA1의 사균체의 장관장벽 기능에 대하여 in vitro, in vivo에서 실험하였다. 이를 위하여, 세포표면 소수성 상호작용력(cell surface hydrophobicity), 자가응집력(autoaggregation), 세포에 부착하는 능력(cell adhesion)과 자가응집력(autoaggregation), LPS와의 결합력을 조사하였다. 또한 HT-29 장상피세포에서 LPS로 유도되는 IL-8의 발현을 억제하는 효과를 조사하였다. CBT LA1을 80도에서 121도까지 10분 동안 열을 처리하였을 때, 80도에서 열을 처리한 CBT LA1 사균체가 가장 높은 세포에 부착하는 능력을 보여 주었다. CBT LA1 생균과 비교했을 때, 80도에서 열을 처리한 CBT LA1 사균체는 높은 LPS와의 결합력, 소수성 상호작용력, 자가응집력, HT-29 세포에 부착하는 능력과 IL-8의 발현을 억제하는 능력을 보여주었다. In vivo 실험에서 FITC로 label된 LPS를 투여하였을 때 16시간 후, CBT LA1 사균체를 섭취한 동물의 장관 내 LPS가 가장 많이 제거되었다. 이러한 연구 결과들은 CBT LA1 생균처럼 CBT LA1 사균체도 장관장벽 기능을 가지며 이는, 파마바이오틱스로서 그 가능성을 시사한다.

Although studies on probiotics have been performed mostly with viable microbes, the beneficial functions of dead or heat-killed form of probiotic strains have also been examined. In this study, live and heat-killed forms of Lactobacillus acidophilus CBT LA1 were investigated in vitro and in vivo to evaluate the properties necessary for gut barrier protection. Cell surface hydrophobicity (CSH), autoaggregation (AA), cell adhesion, and lipopolysaccharide (LPS)-binding properties were evaluated. In addition, the suppressive effect on LPS-induced interleukin (IL)-8 expression was investigated in HT-29 cells. To identify optimal conditions for CBT LA1 to adhere to HT-29 cells, CBT LA1 cells were heat-treated at 80, 85, 90, 95, 100, or $121^{\circ}C$ for 10 min; cells treated at $80^{\circ}C$ for 10 min showed the highest adhesion. Heat-killed bacteria at $80^{\circ}C$ showed higher levels of LPS-binding, CSH, AA, adhesion to HT-29, and suppression of IL-8 expression than did live CBT LA1. In vivo imaging was performed to evaluate the ability of live or heat-killed CBT LA1 to remove LPS from the intestine in a rat model of infection. At 16 h after infection, fluorescence from FITC-conjugated LPS had mostly disappeared from the intestine of the rats administered with live or heat-killed CBT LA1; the effect was greater with heat-killed CBT LA1 at $80^{\circ}C$. These results suggest that heat-killed CBT LA1 as well as its live form can be applied as a pharmabiotic for protection of the gut barrier.

키워드

참고문헌

  1. Barbara, G., De Giorgio, R., Stanghellini, V., Cremon, C., and Corinaldesi, R. 2002. A role for inflammation in irritable bowel syndrome? Gut 51 (Suppl 1), i41-i44. https://doi.org/10.1136/gut.51.suppl_1.i41
  2. Boris, J.E., Suarez, S., and Barbes, C. 1997. Characterization of the aggregation promoting factor from Lactobacillus gasseri, a vaginal isolate. J. Appl. Microbiol. 83, 413-420. https://doi.org/10.1046/j.1365-2672.1997.00250.x
  3. Cani, P.D., Osto, M., Geurts, L., and Everard, A. 2012. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3, 279-288. https://doi.org/10.4161/gmic.19625
  4. Chuang, L., Wu, K.G., Pai, C., Hsieh, P.S., Tsai, J.J., Yen, J.H., and Lin, M.Y. 2007. Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. J. Agric. Food Chem. 55, 11080-11086. https://doi.org/10.1021/jf071786o
  5. Coconnier, M.H., Bernet, M.F., Chauviere, G., and Servin, A.L. 1993. Adhering heat-killed human Lactobacillus acidophilus, strain LB, inhibits the process of pathogenicity of diarrhoeagenic bacteria in cultured human intestinal cells. J. Diarrhoeal Dis. Res. 11, 235-242.
  6. Cohen, J. 2002. The immunopathogenesis of sepsis. Nature 420, 885-891. https://doi.org/10.1038/nature01326
  7. Del Re, B., Sgorbati, B., Miglioli, B.M., and Palenzona, D. 2000. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 31, 438-442. https://doi.org/10.1046/j.1365-2672.2000.00845.x
  8. Fourniat, J., Colomban, C., Linxe, C., and Karam, D. 1992. Heat-killed Lactobacillus acidophilus inhibits adhesion of Escherichia coli B41 to HeLa cells. Ann. Rech. Vet. 23, 361-370.
  9. Kiely, L.J. and Olson, N.F. 2000. The physicochemical surface characteristics of Lactobacillus casei. Food Microbiol. 17, 277-291. https://doi.org/10.1006/fmic.1999.0311
  10. Kiso, M., Takano, R., Sakabe, S., Katsura, H., Shinya, K., Uraki, R., Watanabe, S., Saito, H., Toba, M., Kohda, N., et al. 2013. Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus. Sci Rep. 3, 1563. https://doi.org/10.1038/srep01563
  11. Kwak, D.S., Jun, D.W., Seo, J.G., Chung, W.S., Park, S.E., Lee, K.N., Khalid-Saeed, W., Lee, H.L., Lee, O.Y., Yoon, B.C., et al. 2014. Short-term probiotic therapy alleviates small intestinal bacterial overgrowth, but does not improve intestinal permeability in chronic liver disease. Eur. J. Gastroenterol. Hepatol. 26, 1353-1359.
  12. Lim, N.K., Yoo, J.C., Park, T.R., and So, J.S. 1998. The relationship between cell surface hydrophobicity (CSH) and stress tolerance in Bifidobacterium spp. Food Sci. Biotechnol. 7, 66-70.
  13. Maeda, N., Nakamura, R., Hirose, Y., Murosaki, S., Yamamoto, Y., Kase, T., and Yoshikai, Y. 2009. Oral administration of heatkilled Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int. Immunopharmacol. 9, 1122-1125. https://doi.org/10.1016/j.intimp.2009.04.015
  14. Naidu, A.S., Bidlack, W.R., and Clemens, R.A. 1999. Probiotic spectra of lactic acid bacteria (LAB). Cri. Rev. Food Sci. Nutr. 38, 13-126.
  15. Nilsen, E.M., Johansen, F.E., Jahnsen, F.L., Lundin, K.E., Scholz, T., Brandtzaeg, P., and Haraldsen, G. 1998. Cytokine profiles of cultured microvascular endothelial cells from the human intestine. Gut 42, 635-642. https://doi.org/10.1136/gut.42.5.635
  16. O'Hara, A.M. and Shanahan, F. 2007. Mechanisms of action of probiotics in intestinal diseases. Scientific World J. 7, 31-46. https://doi.org/10.1100/tsw.2007.26
  17. Park, M.S., Kim, M.J., and Ji, G.E. 2007. Assessment of lipopolysaccharide-binding activity of Bifidobacterium and its relationship with cell surface hydrophobicity, autoaggregation, and inhibition of interleukin-8 production. J. Microbiol. Biotechnol. 17, 1120-1126.
  18. Peng, G.C. and Hsu, C.H. 2005. The efficacy and safety of heat-killed Lactobacillus paracasei for treatment of perennial allergic rhinitis induced by house-dust mite. Pediatr. Allergy Immunol. 16, 433-438. https://doi.org/10.1111/j.1399-3038.2005.00284.x
  19. Ram, C. and Chander, H. 2003. Optimization of culture conditions of probiotic bifidobacteria for maximal adhesion to hexadecane. World J. Microbiol. Biotechnol. 19, 407-410. https://doi.org/10.1023/A:1023946702949
  20. Reid, G., McGroarty, J.A., Angotti, R., and Cook, R.L. 1988. Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol. 34, 344-351. https://doi.org/10.1139/m88-063
  21. Rodes, L., Khan, A., Paul, A., Coussa-Charley, M., Marinescu, D., Tomaro-Duchesneau, C., Shao, W., Kahouli, I., and Prakash, S. 2013. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. J. Microbiol. Biotechnol. 23, 518-526. https://doi.org/10.4014/jmb.1205.05018
  22. Schillinger, U., Guigas, C., and Holzapfel, W.H. 2005. In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int. Dairy J. 15, 1289-1297. https://doi.org/10.1016/j.idairyj.2004.12.008
  23. Su, G.L. 2002. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G256-G265. https://doi.org/10.1152/ajpgi.00550.2001
  24. Tareb, R., Bernardeau, M., Gueguen, M., and Vernoux, J.P. 2013. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. J. Med. Microbiol. 62, 637-649. https://doi.org/10.1099/jmm.0.049965-0
  25. Tuomola, E.M., Ouwehand, A.C., and Salminen, S.J. 2000. Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins. Int. J. Food Microbiol. 60, 75-81. https://doi.org/10.1016/S0168-1605(00)00319-6
  26. Yoon, J.S., Sohn, W., Lee, O.Y., Lee, S.P., Lee, K.N., Jun, D.W., Lee, H.L., Yoon, B.C., Choi, H.S., Chung, W.S., et al. 2014. Effect of multispecies probiotics on irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J. Gastroenterol. Hepatol. 29, 52-59. https://doi.org/10.1111/jgh.12322

피인용 문헌

  1. Isolation and Preliminary Screening of a Weissella confusa Strain from Giant Panda (Ailuropoda melanoleuca) pp.1867-1314, 2018, https://doi.org/10.1007/s12602-018-9402-2
  2. Butyrivibrio fibrisolvens F7 dietary supplementation increases levels of cis 9-trans 11 conjugated linoleic acid in gut and adipose tissue in mice vol.3, pp.None, 2015, https://doi.org/10.1016/j.crbiot.2021.11.001