DOI QR코드

DOI QR Code

Electrical Properties of Polyetherimide(PEI)-MWCNT Composite Fibers Prepared by Electrospinning

전기방사에 의한 폴리에테르이미드(PEI)-MWCNT 복합섬유의 제조 및 물성에 대한 연구

  • Kim, A-Rong (Department of Organic Material and Polymer Engineering, Dong-A University) ;
  • Kang, YoungAh (Department of Organic Material and Polymer Engineering, Dong-A University) ;
  • Park, Jong S. (Department of Organic Material Science and Engineering, Pusan National University)
  • 김아롱 (동아대학교 유기재료고분자공학과) ;
  • 강영아 (동아대학교 유기재료고분자공학과) ;
  • 박종승 (부산대학교 유기소재시스템공학과)
  • Received : 2015.09.06
  • Accepted : 2015.10.03
  • Published : 2015.10.31

Abstract

We have prepared multi-walled carbon nanotube (MWCNT)-embedded conductive composite fibers using polyetherimide (PEI) as a polymer matrix (denoted as PEI-MWCNT). Uniform dispersion of the MWCNTs in dimethylacetamide was achieved after functionalization with quadruple hydrogen bonding sites, after which conductive composite fibers were produced via an electrospinning process. PEI-MWCNT fibers were prepared containing up to 3 wt% MWCNTs, and the resulting fibers were analyzed in order to determine the diameter and electrical conductivity of the fibers. Analysis of the fibers with scanning electron microscopy (SEM) revealed highly porous fiber structures, and that the MWCNTs were well-dispersed within the PEI matrix. Increasing the amount of MWCNTs in the fiber resulted in a decrease in the average fiber diameter, and the electrical conductivity was improved even when only a small amount of functionalized MWCNT was present.

Keywords

Acknowledgement

Grant : 초고내열성 polyetherimide(PEI) 섬유의 방사기술 개발

Supported by : 기술부설연구소

References

  1. Echeverria, P. C. Su, S. L. Simon, and D. J. Plazek, "Physical Aging of a Polyetherimide: Creep and DSC Measurements", J. Polym. Sci. Part B: Polym. Phys., 1995, 33, 2457-2468. https://doi.org/10.1002/polb.1995.090331717
  2. S. T. Amancio-Filho, J. Roeder, S. P. Nunes, J. F. dos Santos, and F. Beckmann, "Thermal Degradation of Polyetherimide Joined by Friction Riveting (FricRiveting). Part I: Influence of Rotation Speed", Polym. Degrad. Stabil., 2008, 93, 1529-1538. https://doi.org/10.1016/j.polymdegradstab.2008.05.019
  3. J. T. Han, B. H. Jeong, S. H. Seo, K. C. Roh, S. Kim, S. Choi, J. S. Woo, H. Y. Kim, J. I. Jang, D. C. Shin, S. Jeong, H. J. Jeong, S. Y. Jeong, and G. W. Lee, "Dispersant-free Conducting Pastes for Flexible and Printed Nanocarbon Electrodes", Nat. Commun., 2013, 4, 2491.
  4. A. Laforgue and L. Robitaille, "Production of Conductive PEDOT Nanofibers by the Combination of Electrospinning and Vapor-Phase Polymerization", Macromolecules, 2010, 43, 4194-4200. https://doi.org/10.1021/ma9027678
  5. C. Q. Yin, J. Dong, Z. T. Li, Z. X. Zhang, and Q. H. Zhang, "Large-scale of Polyimide Fibers Containing Functionalized Multiwalled Carbon Nanotubes via Wet Spinning", Compos. Part B-Eng., 2014, 58, 430-437. https://doi.org/10.1016/j.compositesb.2013.10.074
  6. J. H. Zhu, H. B. Gu, Z. P. Luo, N. Haldolaarachige, D. P. Young, S. Y. Wei, and Z. H. Guo, "Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties", Langmuir, 2012, 28, 10246-10255. https://doi.org/10.1021/la302031f
  7. R. Bhatia, C. S. S. Sangeeth, V. Prasad, and R. Menon, “Preparation and Characterization of Multiwall Carbon Nanotube/polypyrrole Coaxial Fibrils”, Physica B, 2011, 406, 1727-1732. https://doi.org/10.1016/j.physb.2011.02.016
  8. S. Kumar, T. Rath, R. N. Mahaling, C. S. Reddy, C. K. Das, K. N. Pandey, R. B. Srivastava, and S. B. Yadaw, "Study on Mechanical, Morphological and Electrical Properties of Carbon Nanofiber/polyetherimide Composites", Mat. Sci. Eng. B-Solid, 2007, 141, 61-70. https://doi.org/10.1016/j.mseb.2007.06.002
  9. S. A. Hashemifard, A. F. Ismail, and T. Matsuura, "Effects of Montmorillonite Nano-clay Fillers on PEI Mixed Matrix Membrane for $CO_2$ Removal", Chem. Eng. J., 2011, 170, 316-325. https://doi.org/10.1016/j.cej.2011.03.063