DOI QR코드

DOI QR Code

Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics

전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기 반응채널구조에 따른 열적 효과 분석

  • Lee, Yongkyu (School of Chemical and Biological Engineering, Seoul National University) ;
  • Jung, Ikhwan (School of Chemical and Biological Engineering, Seoul National University) ;
  • Na, Jonggeol (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Seongho (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kshetrimayum, Krishnadash S. (School of Chemical and Biological Engineering, Seoul National University) ;
  • Han, Chonghun (School of Chemical and Biological Engineering, Seoul National University)
  • 이용규 (서울대학교 화학생물공학부) ;
  • 정익환 (서울대학교 화학생물공학부) ;
  • 나종걸 (서울대학교 화학생물공학부) ;
  • 박성호 (서울대학교 화학생물공학부) ;
  • ;
  • 한종훈 (서울대학교 화학생물공학부)
  • Received : 2015.01.03
  • Accepted : 2015.03.03
  • Published : 2015.12.01

Abstract

In this study, FT reaction in a microchannel was simulated using computational fluid dynamics(CFD), and sensitivity analyses conducted to see effects of channel geometry variables, namely, process channel width, height, gap between process channel and cooling channel, and gap between process channels on the channel temperature profile. Microchannel reactor considered in the study is composed of five reaction channels with height and width ranging from 0.5 mm to 5.0 mm. Cooling surfaces is assumed to be in isothermal condition to account for the heat exchange between the surface and process channels. A gas mixture of $H_2$ and CO($H_2/CO$ molar ratio = 2) is used as a reactant and operating conditions are the following: GHSV(gas hourly space velocity) = $10000h^{-1}$, pressure = 20 bar, and temperature = 483 K. From the simulation study, it was confirmed that heat removal in an FT microchannel reactor is affected channel geometry variables. Of the channel geometry variables considered, channel height and width have significant effect on the channel temperature profile. However, gap between cooling surface and process channel, and gap between process channels have little effect. Maximum temperature in the reaction channel was found to be proportional to channel height, and not affected by the width over a particular channel width size. Therefore, microchannels with smaller channel height(about less than 2 mm) and bigger channel width (about more than 4 mm), can be attractive design for better heat removal and higher production.

본 연구에서는 전산유체역학(CFD)을 이용하여 마이크로채널 내부의 Fischer-Tropsch(FT) 반응을 모사하였고, 나아가 반응채널의 너비와 높이, 냉각채널과의 거리 그리고 채널 사이 간격을 변수로 두고 채널 내부 온도에 대해 민감도 분석을 수행하였다. 마이크로채널 반응기는 채널 간의 열교환을 고려하기 위한 5개의 반응채널과 냉각채널을 대신한 냉각면으로 이루어져 있으며 채널의 높이와 너비를 포함한 변수들의 길이는 0.5 mm ~ 5.0 mm 범위에서 설정하였다. 반응물로는 $H_2$와 CO의 혼합기체($H_2/CO$ molar ratio=2)를 사용하였으며 반응기의 운전 조건은 $GHSV=10000h^{-1}$, 압력 20 bar와 온도 483 K($210^{\circ}C$)이다. 민감도 분석의 결과로 반응채널 내부의 최대 온도는 채널의 높이에 비례하며 너비에 대해서는 특정 길이 이상에서 영향을 받지 않는 것을 확인하였으며 이 중에 냉각채널과의 거리와 채널 사이 간격은 채널 내부 온도에 거의 영향을 미치지 않았다. 따라서 채널 레이아웃에서 반응채널의 높이는 짧을수록(약 2 mm 이하), 너비는 길수록(약 4 mm 이상) 열제거뿐만 아니라 생산량 측면에서 이득을 얻을 수 있었다.

Keywords

References

  1. Kim, H.-J., Choi, D.-K., Ahn, S.-I., Kwon, H. and Lim, H.-W., "Gtl Fpso-an Alternative Solution to Offshore Stranded Gas," Ratio, 1, $H_2O$(2014).
  2. Sousa-Aguiar, E. F., Noronha, F. B. and Faro Jr, A., "The Main Catalytic Challenges in Gtl (gas-to-liquids) Processes," Catalysis Science & Technology, 1, 698(2011). https://doi.org/10.1039/c1cy00116g
  3. Van Loenhout, A., Van Zeelenberg, L., Roth, G., van Sheehan, E. and Jannasch, N., "Commercialization of Stranded Gas with a Combined Oil and Gtl Fpso," Offshore Technology Conference, Offshore Technology Conference(2006).
  4. Wilhelm, D., Simbeck, D., Karp, A. and Dickenson, R., "Syngas Production for Gas-to-liquids Applications: Technologies, Issues and Outlook," Fuel Process. Technol., 71, 139(2001). https://doi.org/10.1016/S0378-3820(01)00140-0
  5. Franz, F. and Hans, T., "Process for the Production of Paraffin-hydrocarbons with More Than one Carbon Atom," Google Patents (1930).
  6. Iglesia, E., "Design, Synthesis, and Use of Cobalt-based Fischer-tropsch Synthesis Catalysts," Appl. Catal. A: Gen., 161, 59(1997). https://doi.org/10.1016/S0926-860X(97)00186-5
  7. Almeida, L., Echave, F., Sanz, O., Centeno, M., Arzamendi, G., Gandia, L., Sousa-Aguiar, E., Odriozola, J. and Montes, M., "Fischer-tropsch Synthesis in Microchannels," Chem. Eng. J., 167, 536(2011). https://doi.org/10.1016/j.cej.2010.09.091
  8. Knochen, J., Guttel, R., Knobloch, C. and Turek, T., "Fischer-tropsch Synthesis in Milli-structured Fixed-bed Reactors: Experimental Study and Scale-up Considerations," Chem. Eng. Process: Process Intensification, 49, 958(2010). https://doi.org/10.1016/j.cep.2010.04.013
  9. Gumuslu, G. and Avci, A. K., "Parametric Analysis of Fischer-tropsch Synthesis in a Catalytic Microchannel Reactor," AIChE J., 58, 227(2012). https://doi.org/10.1002/aic.12558
  10. Keyser, M. J., Everson, R. C. and Espinoza, R. L., "Fischer-tropsch Kinetic Studies with Cobalt-manganese Oxide Catalysts," Ind. Eng. Chem. Res., 39, 48(2000). https://doi.org/10.1021/ie990236f
  11. Davis, B. H., "Fischer-tropsch Synthesis: Overview of Reactor Development and Future Potentialities," Top. Catal., 32, 143(2005). https://doi.org/10.1007/s11244-005-2886-5
  12. LeViness, S., Tonkovich, A., Jarosch, K., Fitzgerald, S., Yang, B. and McDaniel, J., "Improved Fischer-tropsch Economics Enabled by Microchannel Technology," White Paper generated by Velocys( 2011).
  13. Vosloo, A. C., "Fischer-tropsch: A Futuristic View," Fuel Process. Technol., 71, 149(2001). https://doi.org/10.1016/S0378-3820(01)00143-6
  14. Deshmukh, S. R., Tonkovich, A. L. Y., Jarosch, K. T., Schrader, L., Fitzgerald, S. P., Kilanowski, D. R., Lerou, J. J. and Mazanec, T. J., "Scale-up of Microchannel Reactors for Fischer-tropsch Synthesis," Ind. Eng. Chem. Res., 49, 10883(2010). https://doi.org/10.1021/ie100518u
  15. Hasan, M. I., Rageb, A., Yaghoubi, M. and Homayoni, H., "Influence of Channel Geometry on the Performance of a Counter Flow Microchannel Heat Exchanger," Int. J. Therm. Sci., 48, 1607(2009). https://doi.org/10.1016/j.ijthermalsci.2009.01.004
  16. Guo, Z.-Y. and Li, Z.-X., "Size Effect on Microscale Single-phase Flow and Heat Transfer," Int. J. Therm. Sci., 46, 149 (2003).
  17. Peng, X. and Peterson, G., "The Effect of Thermofluid and Geometrical Parameters on Convection of Liquids Through Rectangular Microchannels," Int. J. Therm. Sci., 38, 755(1995).
  18. Na, J., Jung, I., Kshetrimayum, K. S., Park, S., Park, C. and Han, C., "Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-tropsch Microchannel Reactor," Korean Chem. Eng. Res., 52, 826(2014). https://doi.org/10.9713/kcer.2014.52.6.826
  19. Arzamendi, G., Dieguez, P., Montes, M., Odriozola, J., Falabella Sousa-Aguiar, E. and Gandia, L., "Computational Fluid Dynamics Study of Heat Transfer in a Microchannel Reactor for Low-temperature Fischer-tropsch Synthesis," Chem. Eng. J., 160, 915(2010). https://doi.org/10.1016/j.cej.2009.12.028
  20. Van Der Laan, G. P. and Beenackers, A., "Kinetics and Selectivity of the Fischer-tropsch Synthesis: A Literature Review," Catalysis Reviews, 41, 255(1999). https://doi.org/10.1081/CR-100101170
  21. Tonkovich, A. L., Yuschak, T., Neagle, P. W., Marco, J. L., Marco, J. D., Marchiando, M. A., Keyes, L. W., Deshmukh, S. and Luzenski, R. J., "Laminated, Leak-resistant Chemical Processors; Methods of Making, and Methods of Operating," Google Patents(2012).
  22. Zhu, X., Lu, X., Liu, X., Hildebrandt, D. and Glasser, D., "Heat Transfer Study with and Without Fischer-tropsch Reaction in a Fixed Bed Reactor with tio2, sio2, and Sic Supported Cobalt Catalysts," Chem. Eng. J., 247, 75(2014). https://doi.org/10.1016/j.cej.2014.02.089

Cited by

  1. PEO-PPO-PEO 블록 공중합체를 이용한 PDMS의 친수성 표면 개질 방법 vol.55, pp.6, 2015, https://doi.org/10.9713/kcer.2017.55.6.791