References
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
- F. E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. (USA) 53 (1965), 1272-1276. https://doi.org/10.1073/pnas.53.6.1272
- L. C. Ceng, Q. H. Ansari, and J. C. Yao, Some iterative methods for finding fixed points and solving constrained convex minimization problems, Nonlinear Anal. 74 (2011), no. 16, 5286-5802. https://doi.org/10.1016/j.na.2011.05.005
- L. C. Ceng, T. Tanaka, and J. C. Yao, Iterative construction of fixed points of nonself- mappings in Banach spaces, J. Comput. Appl. Math. 206 (2007), no. 2, 814-825. https://doi.org/10.1016/j.cam.2006.08.028
- F. Cianciaruso, G. Marino, and L. Muglia, Iterative methods for equilibrium and fixed point problems for nonexpansive semigroups in Hilbert space, J. Optim. Theory Appl. 146 (2010), no. 2, 491-509. https://doi.org/10.1007/s10957-009-9628-y
- K. Fan, A generalization of Tychonoff's fixed-point theorem, Math. Ann. 142 (1961), 305-310. https://doi.org/10.1007/BF01353421
- K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, 28, Cambridge University Press, Cambridge, 1990.
- K. R. Kazmi and S. H. Rizvi, A hybrid extragradient method for approximating the common solutions of a variational inequality, a system of variational inequalities, a mixed equilibrium problem and a fixed point problem, Appl. Math. Comput. 218 (2012), no. 9, 5439-5452. https://doi.org/10.1016/j.amc.2011.11.032
- K. R. Kazmi, Iterative approximation of a common solution of split generalized equilibrium problem and a fixed point problem for a nonexpansive semigroup, Math. Sci. 7 (2013), Article 1.
- K. R. Kazmi, Implicit iterative method for approximating a common solution of split equi- librium problem and fixed point problem for a nonexpansive semigroup, Arab J. Math. Sci. 20 (2014), no. 1, 57-75. https://doi.org/10.1016/j.ajmsc.2013.04.002
- G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), no. 1, 43-52. https://doi.org/10.1016/j.jmaa.2005.05.028
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), no. 4, 595-597.
- S. Plubtieng and R. Punpaeng, Fixed point solutions of variational inequalities for nonexpansive semigroups in Hilbert spaces, Math. Comput. Modelling 48 (2008), no. 1-2, 279-286. https://doi.org/10.1016/j.mcm.2007.10.002
- T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), no. 1, 71-83. https://doi.org/10.1006/jmaa.1997.5398
- X. Xiao, S. Li, L. Li, H. Song, and L. Zhang, Strong convergence of composite general iterative methods for one-parameter nonexpansive semigroup and equilibrium problems, J. Inequal. Appl. 2012 (2012), 131, 19 pp.
- H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), no. 1, 240-256. https://doi.org/10.1112/S0024610702003332
Cited by
- Strong convergence of gradient projection method for generalized equilibrium problem in a Banach space vol.2017, pp.1, 2017, https://doi.org/10.1186/s13660-017-1574-x