References
- J. Chapman, M. B. Erdogan, D. Hart, A. Iosevich, and D. Koh, Pinned distance sets, k-simplices, Wolff's exponent in finite fields and sum-product estimates, Math Z. 271 (2012), no. 1-2, 63-93. https://doi.org/10.1007/s00209-011-0852-4
- D. Covert, D. Hart, A. Iosevich, D. Koh, and M. Rudnev, Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields, European J. Combin. 31 (2010), no. 1, 306-319. https://doi.org/10.1016/j.ejc.2008.11.015
- D. Covert, D. Hart, A. Iosevich, S. Senger, and I. Uriarte-Tuero, A Furstenberg-Katznelson-Weiss type-theorem on (d+1)-point configurations in sets of positive density in finite field geometries, Discrete Math. 311 (2011), no. 6, 423-430. https://doi.org/10.1016/j.disc.2010.10.009
- A. Iosevich and M. Rudnev Erdos distance problem in vector spaces over finite fields, Transactions of the AMS, 2007.
- H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloquium Publications 53 (2004).
- A. Medrano, P. Myers, H. Stark, and A. Terras, Finite analogues of Euclidean space, J. Comput. Appl. Math. 68 (1996), no. 1-2, 221-238. https://doi.org/10.1016/0377-0427(95)00261-8
- L. Vinh, The Szemeredi-Trotter type theorem and the sum-product estimate in finite fields, European J. Combin. 32 (2011), no. 8, 1177-1181. https://doi.org/10.1016/j.ejc.2011.06.008