DOI QR코드

DOI QR Code

Electrical Transport Properties of La0.5Sr0.5CrO3 Ceramics

La0.5Sr0.5CrO3 세라믹스의 전기전도특성

  • Received : 2015.07.30
  • Accepted : 2015.12.22
  • Published : 2016.01.27

Abstract

The electrical transport properties of $La_{0.5}Sr_{0.5}CrO_3$ below room temperatures were investigated by dielectric, dc resistivity, magnetic properties and thermoelectric power. Below $T_c$, $La_{0.5}Sr_{0.5}CrO_3$ contains a dielectric relaxation process in the tangent loss and electric modulus. The $La_{0.5}Sr_{0.5}CrO_3$ involves the transition from high temperature thermal activated conduction process to low temperature one. The transition temperature corresponds well to the Curie point. The relaxation mechanism has been discussed in the frame of electric modulus spectra. The scaling behavior of the modulus suggests that the relaxation mechanism describes the same mechanism at various temperatures. The low temperature conduction and relaxation takes place in the ferromagnetic phase. The ferromagnetic state in $La_{0.5}Sr_{0.5}CrO_3$ indicates that the electron - magnon interaction occurs, and drives the carriers towards localization in tandem with the electron - lattice interaction even at temperature above the Curie temperature.

Keywords

References

  1. A. Fujimori, I. Hase, M. Namatame, Y. Fujishima, and Y. Tokura, Phys. Rev. B, 46, 9841 (1992). https://doi.org/10.1103/PhysRevB.46.9841
  2. D. A. Crandles, T. Timusk, J. D. Garrett and J. E. Greedan, Phys. Rev. B, 49, 16207 (1994). https://doi.org/10.1103/PhysRevB.49.16207
  3. Y. Okada, T. Arima, Y. Tokura, C. Murayama and N. Mori, Phys. Rev. B, 48, 9667 (1993).
  4. H. L. Ju, C. Eylem, J. L. Peng, B. W. Eichhorn and R. L. Greene, Phys. Rev. B, 49, 13335 (1994). https://doi.org/10.1103/PhysRevB.49.13335
  5. M. Onoda and M. Yasumoto, J. Phys. Condens. Matter., 9, 3861 (1997). https://doi.org/10.1088/0953-8984/9/19/007
  6. M. Onoda and M. Yasumoto, J. Phys. Condens. Matter., 9, 5623 (1997). https://doi.org/10.1088/0953-8984/9/26/010
  7. T. Katsufuji, Y. Taguchi and Y. Tokura, Phys. Rev. B, 56, 10145 (1997). https://doi.org/10.1103/PhysRevB.56.10145
  8. O. Akaki, A. Chaninani, T. Yokoya, H. Fujisiwa, T. Takahashi and M. Onoda, Phys. Rev. B, 56, 12050 (1998).
  9. N. Shanthi and D. D. Sarma, Phys. Rev. B, 57, 2153 (1998). https://doi.org/10.1103/PhysRevB.57.2153
  10. S. Yamaguchi, Y. Okimoto and Y. Tokura, Phys. Rev. B, 54, R11022 (1996). https://doi.org/10.1103/PhysRevB.54.R11022
  11. E. Iguchi, K. Ueda and W. H. Jung, Phys. Rev. B., 54, 17431 (1996). https://doi.org/10.1103/PhysRevB.54.17431
  12. M. Abbate, F. M. F. de Groot, J. C. Fuggle, A. Fujimori, O. Strebel, F. Lopez, M. Domke, G. Kaindle, G. A. Sawatzky, M. Takano, Y. Takeda, H. Eisaki and S. Uchida, Phys. Rev. B, 46, 4511 (1992). https://doi.org/10.1103/PhysRevB.46.4511
  13. M. Abbate, J. C. Fuggle, A. Fujimori, L. H. Tjeng, C. T. Chen, R. Potze, G. A. Sawatzky, H. Eisaki and S. Uchida, Phys. Rev. B, 47, 16124 (1992).
  14. K. Tezuka, Y. Hinatsu, A. Nakamura, T. Inami, Y. Shimojo and Y. Morii, J. Solid State Chem., 141, 404 (1998). https://doi.org/10.1006/jssc.1998.7961
  15. T. A. Tyson, J. M. de Leon, S. D. Conradson, A. R. Bishop, J. J. Neumeier, H. Roder and J. Zang, Phys. Rev. B, 53, 13958 (1996).
  16. D. P. Karim and A. T. Aldred, Phys. Rev. B, 20, 2255 (1979). https://doi.org/10.1103/PhysRevB.20.2255
  17. W. J. Weber, C. W. Griffin and J. L. Bates, J. Am. Ceram. Soc., 70, 265 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04979.x
  18. D. B. Marsh and P. E. Parris, Phys. Rev. B, 54, 7720 (1996). https://doi.org/10.1103/PhysRevB.54.7720
  19. P. S. Devi and M. S. Rao, J. Solid State Chem., 98, 237 (1992). https://doi.org/10.1016/S0022-4596(05)80231-2
  20. S. K. Park, T. Ishikawa, Y. Tokura, J. Q. Li and Y. Matsui, Phys. Rev. B, 60, 10788 (1999). https://doi.org/10.1103/PhysRevB.60.10788
  21. T. Ishikawa, S. K. Park, T. Katsufuji, T. Arima and Y. Tokura, Phys. Rev. B, 58, R133326 (2000).
  22. Y. P. Lee, V. G. Prokhorov, J. Y. Rhee, K. W. Kim, G. G. Kaminsky and V. S. Fils, J. Phys. Condens. Matter., 12, L133 (2000). https://doi.org/10.1088/0953-8984/12/6/112
  23. D. D. Sarma, K. Maiti, E. Vescovo, C. Carbone, W. Eberhardt, O. Rader and W. Gudat, Phy. Rev. B, 20, 13369 (1996).
  24. K. P. Bansal, S. Kumari, B. K. Das and G. C. Jain, J. Mater. Sci., 18, 2095 (1983). https://doi.org/10.1007/BF00555003
  25. A. Mansingh, J. M. Reyes and M. Sayer, J. Non - Cryst. Solids, 7, 12 (1972). https://doi.org/10.1016/0022-3093(72)90014-2
  26. A. Seeger, P. Lunkenheimer, J. Hemberger, A. A. Mukhin, V. Yu Ivanov, A. M. Balbasov and A. Loid, J. Phys. Condens. Matter., 11, 3273 (1999). https://doi.org/10.1088/0953-8984/11/16/009
  27. H. Jhnas, D. Kim, R. J. Rasmussen and J. M. Honig, Phys. Rev. B, 54, 11224 (1996). https://doi.org/10.1103/PhysRevB.54.11224
  28. P. K. Bajpai and K. N. Singh. Physica. B, 406, 1226 (2001).
  29. P. Kumar, B. P. Singh, T. P. Sinha and N. K. Singh, Physica B, 406, 139 (2001).
  30. F. S. Howell, R. A. Bose, P. B. Macedo and C. T. Moynihan, J. Phys. Chem., 78, 639 (1974). https://doi.org/10.1021/j100599a016
  31. H. Mahamoud, B. Louati, F, Hlel and K. Guidara, J. Alloy Comp., 509, 6083 (2011). https://doi.org/10.1016/j.jallcom.2011.03.027
  32. X. Q. Liu, W. Z. Yang, C. L. Song and X. M. Chen, Appl. Phys. A, 100, 1131 (2010). https://doi.org/10.1007/s00339-010-5715-z
  33. D. K. Mahato, A. Dutta and T. P. Sinha, J. Mater. Sci., 45, 6757 (2010). https://doi.org/10.1007/s10853-010-4771-2
  34. S. Saha and T. P. Sinha, Phys. Rev. B, 65, 134102 (2002). https://doi.org/10.1103/PhysRevB.65.134102
  35. M. Idrees, M. Nadeem and M. M. Hassan, J. Phys. D Appl. Phys., 43, 155401 (2010). https://doi.org/10.1088/0022-3727/43/15/155401
  36. A. Dutta and T. P. Sinha, Physica B, 405, 1475 (2010). https://doi.org/10.1016/j.physb.2009.12.021
  37. W. H. Jung, J. Appl. Phys., 90, 2455 (2001). https://doi.org/10.1063/1.1388600
  38. A. Levstik, C. Filipic, V. Bobnar, S. Drnovsek, J. Holc and M. Kosec, Physica B, 405, 4271 (2010). https://doi.org/10.1016/j.physb.2010.07.023
  39. D. Emin and T. Holstein, Ann. Phys., 53, 439 (1969). https://doi.org/10.1016/0003-4916(69)90034-7
  40. W. Archibald, J. S. Zhou and J. B. Goodenough, Phys. Rev. B, 53, 14445 (1996). https://doi.org/10.1103/PhysRevB.53.14445
  41. M. Culter and N. F. Mott, Phys Rev., 181, 1336 (1969). https://doi.org/10.1103/PhysRev.181.1336
  42. I. G. Austin and N. F. Mott, Adv. Phys., 18, 41 (1969). https://doi.org/10.1080/00018736900101267