DOI QR코드

DOI QR Code

STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

  • Eghbali, Nasrin (Department of Mathematics Faculty of Mathematical Sciences University of Mohaghegh Ardabili) ;
  • Hazrati, Somayeh (Department of Mathematics Faculty of Mathematical Sciences University of Mohaghegh Ardabili)
  • Received : 2015.05.27
  • Published : 2016.01.31

Abstract

In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.

Keywords

References

  1. B. Bouikhalene, E. Elqorachi, and Th. M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12 (2007), no. 2, 247-262.
  2. B. Bouikhalene, E. Elqorachi, and Th. M. Rassias, On the Hyers-Ulam stability of approximately Pexider mappings, Math. Inequal. Appl. 11 (2008), no. 4, 805-818.
  3. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-68. https://doi.org/10.1007/BF02192660
  4. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
  5. E. Elqorachi, Y. Manar, and Th. M. Rassias, Hyers-Ulam stability of quadratic functional equation, Int. J. Nonlinear Anal. Appl. 1 (2010), no. 2, 26-35.
  6. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. https://doi.org/10.1155/S016117129100056X
  7. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
  8. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153. https://doi.org/10.1007/BF01830975
  9. S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137. https://doi.org/10.1006/jmaa.1998.5916
  10. S. M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg 70 (2000), 175-190. https://doi.org/10.1007/BF02940912
  11. J. R. Lee, J. S. An, and C. Park, On the stability of quadratic functional equations, Abs. Appl. Anal. doi: 10.1155/2008/628178.
  12. Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), no. 1, 106-113. https://doi.org/10.1016/0022-247X(91)90270-A
  13. Th. M. Rassias and J. Tabor, Stability of Mappings of Hyers-Ulam Type, Hardronic Press, Inc., Palm Harbor, Florida, 1994.
  14. F. Skof, Approximation of ${\delta}$-quadratic functions on a restricted domain, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984), no. 1-2, 58-70.
  15. H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), no. 1-2, 144-172. https://doi.org/10.1007/BF02755452
  16. S. M. Ulam, A Collection of the Mathematical Problems, New York: Interscience Publ, 1940.