DOI QR코드

DOI QR Code

비트-직렬 LDPC 복호를 위한 효율적 AT 복잡도를 가지는 두 최소값 생성기

Efficient AT-Complexity Generator Finding First Two Minimum Values for Bit-Serial LDPC Decoding

  • Lee, Jea Hack (Department of Electrical and Computer Engineering, Ajou University) ;
  • Sunwoo, Myung Hoon (Department of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2016.09.26
  • 심사 : 2016.11.17
  • 발행 : 2016.12.25

초록

논문은 저면적 비트-직렬 두 최소값 생성기를 제안한다. Min-sum 복호 알고리즘을 적용한 LDPC 복호기에서 두 최소값 생성기가 가장 큰 하드웨어 복잡도를 가지기 때문에, 두 최소값 생성기의 저면적 구현이 매우 중요하다. 하드웨어 면적을 줄이기 위해 비트-직렬 방식의 LDPC 복호기가 제안되었다. 하지만 기존의 비트-직렬 방식의 생성기는 하나의 최소값만 찾을 수 있어 BER 성능이 감소되었다. 제안하는 생성기는 두 최소값을 모두 찾을 수 있어 BER 성능열화를 극복하고 저면적의 LDPC 복호기 구현이 가능하다. 또한 기존의 두 최소값 생성기들과 비교하여 면적-시간 복잡도에서 가장 좋은 성능을 보인다.

This paper proposes a low-complexity generator which finds the first two minimum values using bit-serial scheme. A low-complexity generator is an important part for low-area LDPC decoders based on the min-sum decoding algorithm because the hardware complexity of generators utilizes a significant portion of LDPC decoders. To reduce hardware complexity, bit-serial LDPC decoders has been studied. The generator of the existing bit-serial LDPC decoders can find only the first minimum value, and thus it leads to a BER performance degradation. The proposed generator using bit-serial scheme finds the first two minimum values. Hence, it can improve the BER performance. In addition, the area-time complexity of the proposed generator is lower than those of the existing generators finding the first two minima.

키워드

참고문헌

  1. R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA, USA: MIT Press, 1963.
  2. J. Kim and W. Sung, "Rate-0. 96 LDPC decoding VLSI for soft-decision error correction of NAND flash memory," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 5, pp. 1004-1015, May 2014. https://doi.org/10.1109/TVLSI.2013.2265314
  3. G. Dong, N. Xie, and T. Zhang, "On the use of soft-decision error correction codes in NAND flash memory," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 2, pp. 429-439, Feb. 2011. https://doi.org/10.1109/TCSI.2010.2071990
  4. IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 3: Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, IEEE Std.802.3an, Sep. 2006.
  5. A. Morello and V. Mignone, "DVB-S2: The second generation standard for satellite broad-band services," Proc. IEEE, vol. 94, no. 1, pp. 210-227, Jan. 2006. https://doi.org/10.1109/JPROC.2005.861013
  6. S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, 2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2004.
  7. A. Darabiha, A. C. Carusone, and F. R. Kschischang, "Power reduction techniques for LDPC decoders," IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1835-1845, Aug. 2008. https://doi.org/10.1109/JSSC.2008.925402
  8. F. Cai, X. Zhang, D. Declercq, S. Planjery, and B. Vasic, "Finite alphabet iterative decoders for LDPC codes: Optimization, architecture and analysis," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 5, pp. 1366-1375, May 2014. https://doi.org/10.1109/TCSI.2014.2309896
  9. P. A. Marshall, V. C. Gaudet, and D. G. Elliott, "Deeply pipelined digit serial LDPC decoding," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 12, pp. 2934-2944, Dec. 2012. https://doi.org/10.1109/TCSI.2012.2206461
  10. J. Li, J. Ma, and G. He, "A memory efficient parallel layered QC-LDPC decoder for CMMB systems," Integr., VLSI J., vol. 46, no. 4, pp. 359-368, Sep. 2013. https://doi.org/10.1016/j.vlsi.2013.01.001
  11. F. Gutierrez, G. Corral-Briones, D. Morero, T. Goette, and F. Ramos, "FPGA implementation of the parity check node for min-sum LDPC decoders," in Proc. Conf. Programmable Logic, Mar. 2012, pp. 1-6.
  12. C. Wey, M. Shieh, and S. Lin, "Algorithms of finding the first two minimum values and their hardware implementation," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3430-3437, Dec. 2008. https://doi.org/10.1109/TCSI.2008.924892
  13. S. Jung, K. Shin. "A design of LDPC decoder for IEEE 802.11n wireless LAN," The Institute of Electronics Engineers of Korea-Semiconductor and Devices, vol. 62, no. 5, pp. 31-40. Nov. 2010.
  14. Y. Lee, B. Kim, J. Jung, and I.-C. Park, "Low-complexity tree architecture for finding the first two minima," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 1, pp. 61-64, Jan. 2015. https://doi.org/10.1109/TCSII.2014.2362663
  15. G. Xiao, M. Martina, G. Masera, and G. Piccinini, "A parallel radix sort-based VLSI architecture for finding the first W maximum/minimum values," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 890-894, Nov. 2014. https://doi.org/10.1109/TCSII.2014.2350333