DOI QR코드

DOI QR Code

MULTIPLE SOLUTIONS FOR A CLASS OF QUASILINEAR SCHRÖDINGER SYSTEM IN ℝN

  • Received : 2015.11.10
  • Published : 2016.11.30

Abstract

This paper is concerned with the quasilinear $Schr{\ddot{o}}dinger$ system $$(0.1)\;\{-{\Delta}u+a(x)u-{\Delta}(u^2)u=Fu(u,v)+h(x)\;x{\in}{\mathbb{R}}^N,\\-{\Delta}v+b(x)v-{\Delta}(v^2)v=Fv(u,v)+g(x)\;x{\in}{\mathbb{R}}^N,$$ where $N{\geq}3$. The potential functions $a(x),b(x){\in}L^{\infty}({\mathbb{R}}^N)$ are bounded in ${\mathbb{R}}^N$. By using mountain pass theorem and the Ekeland variational principle, we prove that there are at least two solutions to system (0.1).

Keywords

References

  1. C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity, J. Differential Equations 254 (2013), no. 4, 1977-1991. https://doi.org/10.1016/j.jde.2012.11.013
  2. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
  3. H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490. https://doi.org/10.1090/S0002-9939-1983-0699419-3
  4. C. S. Chen, Multiple solutions for a class of quasilinear Schrodinger equations in ${\mathbb{R}}^N$, J. Math. Phys. 56 (2015), no. 7, 071507, 14 pp.
  5. C. S. Chen, J. Huang, and L. Liu, Multiple solutions to the nonhomogeneous p-Kirchhoff elliptic equation with concave-convex nonlinearities, Appl. Math. Lett. 26 (2013), no. 7, 754-759. https://doi.org/10.1016/j.aml.2013.02.011
  6. M. Colin and L. Jeanjean, Solutions for a quasilinear Schrodinger equation: a dual approach, Nonlinear Anal. 56 (2004), no. 2, 213-226. https://doi.org/10.1016/j.na.2003.09.008
  7. X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrodinger equation, J. Differential Equations 254 (2013), no. 4, 2015-2032. https://doi.org/10.1016/j.jde.2012.11.017
  8. Y. Guo and Z. Tang, Ground state solutions for quasilinear Schrodinger systems, J. Math. Anal. Appl. 389 (2012), no. 1, 322-339. https://doi.org/10.1016/j.jmaa.2011.11.064
  9. S. Kurihura, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan 50 (1981), 3262-3267. https://doi.org/10.1143/JPSJ.50.3262
  10. E.W. Laedke, K. H. Spatschek, and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys. 24 (1983), no. 12, 2764-2769. https://doi.org/10.1063/1.525675
  11. J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrodinger equations I, Proc. Amer. Math. Soc. 131 (2003), no. 2, 441-448. https://doi.org/10.1090/S0002-9939-02-06783-7
  12. J. Q. Liu, Y. Q. Wang, and Z. Q. Wang, Soliton solutions for quasilinear Schrodinger equation II, J. Differential Equations 187 (2003), no. 2, 473-493. https://doi.org/10.1016/S0022-0396(02)00064-5
  13. J. M. Bezerra do O, O. H. Miyagaki, and S. H. M. Soares, Soliton solutions for quasilinear Schrodinger equations: the critical exponential case, Nonlinear Anal. 67 (2007), no. 12, 3357-3372. https://doi.org/10.1016/j.na.2006.10.018
  14. M. Poppenberg, K. Schmitt, and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrodinger equations, Calc. Var. Partial Differential Equations 14 (2002), no. 3, 329-344. https://doi.org/10.1007/s005260100105
  15. U. Severo and E. da Silva, On the existence of standing wave solutions for a class of quasilinear Schrodinger systems, J. Math. Anal. Appl. 412 (2014), no. 2, 763-775. https://doi.org/10.1016/j.jmaa.2013.11.012
  16. M. Struwe, Variational Methods, third ed., Springer-Verlag, New York, 2000.
  17. M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.