DOI QR코드

DOI QR Code

THREE DIFFERENT WAYS TO OBTAIN THE VALUES OF HYPER m-ARY PARTITION FUNCTIONS

  • Eom, Jiae (Department of Mathematics Yonsei University) ;
  • Jeong, Gyeonga (Department of Mathematics Yonsei University) ;
  • Sohn, Jaebum (Department of Mathematics Yonsei University)
  • Received : 2015.12.18
  • Published : 2016.11.30

Abstract

We consider a natural generalization of $h_2(n)$, denoted $h_m(n)$, which is the number of partitions of n into parts which are power of $m{\geq}2$ wherein each power of m is allowed to be used as a part at most m times. In this note, we approach in three different ways using the recurrences, the matrix and the tree to calculate the value of $h_m(n)$.

Keywords

References

  1. G. E. Andrews, Congruence properties of the m-ary partition function, J. Number Theory 3 (1971), 104-110. https://doi.org/10.1016/0022-314X(71)90051-5
  2. B. P. Bates, M. W. Bunder, and K. P. Tognetti, Linkages between the Gauss map and the Stern-Brocot tree, Acta Math. Acad. Paedagog. Nyhaz. 22 (2006), no. 3, 217-235.
  3. B. P. Bates, M. W. Bunder, and K. P. Tognetti, Locating terms in the Stern-Brocot tree, European J. Combin. 31 (2010), no. 3, 1020-1033. https://doi.org/10.1016/j.ejc.2007.10.005
  4. B. P. Bates, M. W. Bunder, and K. P. Tognetti, Linking the Calkin-Wilf and Stern-Brocot trees, European J. Combin. 31 (2010), no. 7, 1637-1661. https://doi.org/10.1016/j.ejc.2010.04.002
  5. B. Bates and T. Mansour, The q-Calkin-Wilf tree, J. Combin. Theory Ser. A 118 (2011), no. 3, 1143-1151. https://doi.org/10.1016/j.jcta.2010.09.002
  6. N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (2000), no. 4, 360-363. https://doi.org/10.2307/2589182
  7. R. Churchhouse, Congruence properties of the binary partition function, Proc. Cambridge Philos. Soc. 66 (1969), 371-376. https://doi.org/10.1017/S0305004100045072
  8. K. M. Courtright and J. A. Sellers, Arithmetic properties for hyper m-ary partition functions, Integers 4 (2004), A6, 5pp.
  9. G. Dirdal, On restricted m-ary partitions, Math. Scand. 37 (1975), no. 1, 51-60. https://doi.org/10.7146/math.scand.a-11587
  10. G. Dirdal, Congruences for m-ary partitions, Math. Scand. 37 (1975), no. 1, 76-82. https://doi.org/10.7146/math.scand.a-11589
  11. L. L. Dolph, A. Reynolds, and J. A. Sellers, Congruences for a restricted m-ary partition function, Discrete Math. 219 (2000), 265-269. https://doi.org/10.1016/S0012-365X(00)00024-8
  12. H. Gupta, On m-ary partitions, Proc. Cambridge Philos. Soc. 71 (1972), 343-345. https://doi.org/10.1017/S0305004100050581
  13. Q. L. Lu, On a restricted m-ary partition function, Discrete Math. 275 (2004), no. 1-3, 347-353. https://doi.org/10.1016/j.disc.2003.06.013
  14. B. Reznick, Some binary partition functions, Analytic number theory (Allerton Park, IL, 1989), 451-477, Progr. Math., 85, Birkhauser Boston, Boston, MA, 1990.
  15. O. Rodseth, Some arithmetical properties of m-ary partitions, Proc. Cambridge Philos. Soc. 68 (1970), 447-453. https://doi.org/10.1017/S0305004100046259
  16. O. Rodseth and J. A. Sellers, On m-ary partition function congruences: a fresh look at a past problem, J. Number Theory 87 (2001), no. 2, 270-281. https://doi.org/10.1006/jnth.2000.2594
  17. O. Rodseth and J. A. Sellers, On m-ary overpartitions, Ann. Comb. 9 (2005), no. 3, 345-353. https://doi.org/10.1007/s00026-005-0262-6